Department of Chemical and Biomolecular Engineering, The University of Akron , Akron, Ohio, United States.
Bioconjug Chem. 2013 Sep 18;24(9):1515-26. doi: 10.1021/bc400058n. Epub 2013 Aug 26.
In this study we report the successful synthesis of N-(2-mercaptoethyl)-3-(3-methyl-3H-diazirine-3-yl) propanamide (N-MCEP-diazirine), with sulfhydryl and amine photoreactive ends to allow recombinant protein tethering to chitosan films. This regimen allows mimicry of the physiological endeavor of axon pathfinding in the nervous system where neurons rely on cues for guidance during development and regeneration. Our strategy incorporates strong covalent and noncovalent interactions, utilizing N-MCEP-diazirine, maleimide-streptavidin complex, and two custom biotinylated-fusion proteins, nerve growth factor (bNGF), and semaphorin3A (bSema3A). Synthetic yield of N-MCEP-diazirine was 87.3 ± 1.9%. Characteristic absorbance decrease at 348 nm after N-MCEP-diazirine exposure to UV validated the photochemical properties of the diazirine moiety, and the attachment of cross-linker to chitosan films was verified with Fourier transform infrared spectroscopy (FTIR). Fluorescence techniques showed no significant difference in the detection of immobilized proteins compared to absorbing the proteins to films (p < 0.05); however, in vitro outgrowth of dorsal root ganglia (DRG) was more responsive to immobilized bNGF and bSema3A compared to adsorbed bNGF and bSema3A over a 5 day period. Immobilized bNGF significantly increased DRG length over time (p < 0.0001), but adsorbed bNGF did not increase in axon extension from day 1 to day 5 (p = 0.4476). Immobilized bSema3A showed a significant decrease in neurite length (524.42 ± 57.31 μm) at day 5 compared to adsorbed bSema3A (969.13 ± 57.31 μm). These results demonstrate the superiority of our immobilization approach to protein adsorption because biotinylated-fusion proteins maintain their active confirmation and their tethering can be spatially controlled via a UV activated N-MCEP-diazirine cross-linker.
在这项研究中,我们成功合成了 N-(2-巯基乙基)-3-(3-甲基-3H-二氮杂环丁烷-3-基)丙酰胺(N-MCEP-二氮杂环丁烷),其具有巯基和胺光反应末端,可将重组蛋白固定到壳聚糖薄膜上。这种方案模拟了神经系统中轴突寻路的生理努力,在神经系统中,神经元在发育和再生过程中依赖于指导线索。我们的策略结合了强共价和非共价相互作用,利用 N-MCEP-二氮杂环丁烷、马来酰亚胺-链霉亲和素复合物和两种定制的生物素化融合蛋白、神经生长因子(bNGF)和 semaphorin3A(bSema3A)。N-MCEP-二氮杂环丁烷的合成产率为 87.3±1.9%。N-MCEP-二氮杂环丁烷暴露于 UV 后在 348nm 处的特征吸收减少证实了二氮杂环丁烷部分的光化学性质,并且交联剂与壳聚糖薄膜的附着通过傅里叶变换红外光谱(FTIR)得到了验证。荧光技术显示,与将蛋白质吸收到薄膜上相比,固定蛋白质的检测没有明显差异(p<0.05);然而,与吸附的 bNGF 和 bSema3A 相比,体外培养的背根神经节(DRG)对固定化的 bNGF 和 bSema3A 的反应更敏感,在 5 天的时间内。固定化 bNGF 随着时间的推移显著增加了 DRG 的长度(p<0.0001),但从第 1 天到第 5 天,吸附的 bNGF 没有增加(p=0.4476)。与吸附的 bSema3A 相比,固定化 bSema3A 在第 5 天的神经突长度显著减少(524.42±57.31μm)。这些结果表明,我们的蛋白质固定方法优于蛋白质吸附,因为生物素化融合蛋白保持其活性构象,并且可以通过 UV 激活的 N-MCEP-二氮杂环丁烷交联剂进行空间控制。