Department of Chemistry, Iowa State University and Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States.
Inorg Chem. 2013 Aug 19;52(16):9399-408. doi: 10.1021/ic4009653. Epub 2013 Aug 2.
The results of crystallographic analysis, magnetic characterization, and theoretical assessment of β-Mn-type Co-Zn intermetallics prepared using high-temperature methods are presented. These β-Mn Co-Zn phases crystallize in the space group P4(1)32 [Pearson symbol cP20; a = 6.3555(7)-6.3220(7)], and their stoichiometry may be expressed as Co(8+x)Zn(12-x) [1.7(2) < x < 2.2(2)]. According to a combination of single-crystal X-ray diffraction, neutron powder diffraction, and scanning electron microscopy, atomic site occupancies establish clear preferences for Co atoms in the 8c sites and Zn atoms in the 12d sites, with all additional Co atoms replacing some Zn atoms, a result that can be rationalized by electronic structure calculations. Magnetic measurements and neutron powder diffraction of an equimolar Co:Zn sample confirm ferromagnetism in this phase with a Curie temperature of ∼420 K. Neutron powder diffraction and electronic structure calculations using the local spin density approximation indicate that the spontaneous magnetization of this phase arises exclusively from local moments at the Co atoms. Inspection of the atomic arrangements of Co(8+x)Zn(12-x) reveals that the β-Mn aristotype may be derived from an ordered defect, cubic Laves phase (MgCu2-type) structure. Structural optimization procedures using the Vienna ab initio simulation package (VASP) and starting from the undistorted, defect Laves phase structure achieved energy minimization at the observed β-Mn structure type, a result that offers greater insight into the β-Mn structure type and establishes a closer relationship with the corresponding α-Mn structure (cI58).
本文呈现了使用高温方法制备的β-Mn 型 Co-Zn 金属间化合物的晶体结构分析、磁性特征和理论评估结果。这些β-Mn Co-Zn 相在空间群 P4(1)32[Pearson 符号 cP20;a = 6.3555(7)-6.3220(7)]中结晶,其化学计量比可以表示为 Co(8+x)Zn(12-x)[1.7(2) < x < 2.2(2)]。根据单晶 X 射线衍射、中子粉末衍射和扫描电子显微镜的综合分析,原子占据位置清楚地表明 Co 原子优先占据 8c 位,Zn 原子优先占据 12d 位,所有额外的 Co 原子取代部分 Zn 原子,这一结果可以通过电子结构计算来合理化。等摩尔 Co:Zn 样品的磁性测量和中子粉末衍射证实了该相中存在铁磁性,居里温度约为 420 K。中子粉末衍射和使用局域自旋密度近似的电子结构计算表明,该相中自发磁化仅源于 Co 原子的局域磁矩。对 Co(8+x)Zn(12-x)的原子排列的检查表明,β-Mn 典型结构可能源自有序缺陷、立方 Laves 相(MgCu2 型)结构。使用维也纳从头算模拟包(VASP)进行的结构优化程序,并从未畸变的、缺陷 Laves 相结构开始,实现了在观察到的β-Mn 结构类型下的能量最小化,这一结果为β-Mn 结构类型提供了更深入的了解,并与相应的α-Mn 结构(cI58)建立了更密切的关系。