Suppr超能文献

用于预测可生物降解薄膜的机械和阻隔性能的人工神经网络模型。

An artificial neural network model for the prediction of mechanical and barrier properties of biodegradable films.

机构信息

Department of Food Science and Technology, Universidade Estadual de Londrina, P.O. Box. 6001, C.E.P. 86051-990 Londrina, PR, Brazil.

出版信息

Mater Sci Eng C Mater Biol Appl. 2013 Oct;33(7):4331-6. doi: 10.1016/j.msec.2013.06.028. Epub 2013 Jun 28.

Abstract

Nowadays, the production of biodegradable starch-based films is of great interest because of the growing environmental concerns regarding pollution and the need to reduce dependence on the plastics industry. A broad view of the role of different components, added to starch-based films to improve their properties, is required to guide the future development. The self-organizing maps (SOMs) provide comparisons that initially were complicated due to the large volume of the data. Furthermore, the construction of a model capable of predicting the mechanical and barrier properties of these films will accelerate the development of films with improved characteristics. The water vapor permeability (WVP) analysis using the SOM algorithm showed that the presence of glycerol is very important for films with low amounts of poly (butylene adipate co-terephthalate) and confirms the role of the equilibrium relative humidity in the determination of WVP. Considering the mechanical properties, the SOM analysis emphasizes the important role of poly (butylene adipate co-terephthalate) in thermoplastic starch based films. The properties of biodegradable films were predicted and optimized by using a multilayer perceptron coupled with a genetic algorithm, presenting a great correlation between the experimental and theoretical values with a maximum error of 24%. To improve the response of the model and to ensure the compatibility of the components more information will be necessary.

摘要

如今,由于人们对环境污染的日益关注以及减少对塑料工业依赖的需求,可生物降解的淀粉基薄膜的生产引起了人们的极大兴趣。为了指导未来的发展,需要对添加到淀粉基薄膜中以改善其性能的不同成分的作用进行全面了解。自组织映射(SOM)算法提供了比较,这些比较最初由于数据量庞大而变得复杂。此外,构建一个能够预测这些薄膜力学和阻隔性能的模型将加速具有改进特性的薄膜的开发。使用 SOM 算法对水蒸气透过率(WVP)的分析表明,甘油的存在对于低含量的聚(己二酸丁二醇酯-co-对苯二甲酸酯)薄膜非常重要,这证实了平衡相对湿度在确定 WVP 中的作用。考虑到力学性能,SOM 分析强调了聚(己二酸丁二醇酯-co-对苯二甲酸酯)在热塑性淀粉基薄膜中的重要作用。使用多层感知器与遗传算法相结合对可生物降解薄膜的性能进行了预测和优化,实验值与理论值之间具有很好的相关性,最大误差为 24%。为了提高模型的响应能力并确保成分的兼容性,还需要更多的信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验