Suppr超能文献

纳米抗体与大肠杆菌二氢叶酸还原酶的两个表位结合产生的变构和非变构效应的机制分析。

Mechanistic analysis of allosteric and non-allosteric effects arising from nanobody binding to two epitopes of the dihydrofolate reductase of Escherichia coli.

作者信息

Oyen David, Wechselberger Rainer, Srinivasan Vasundara, Steyaert Jan, Barlow John N

机构信息

Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural Biology Research Centre, VIB, Pleinlaan 2, 1050 Brussels, Belgium.

出版信息

Biochim Biophys Acta. 2013 Oct;1834(10):2147-57. doi: 10.1016/j.bbapap.2013.07.010. Epub 2013 Jul 31.

Abstract

Although allosteric effector antibodies are used widely as modulators of receptors and enzymes, experimental analysis of their mechanism remains highly challenging. Here, we investigate the molecular mechanisms of allosteric and non-allosteric effector antibodies in an experimentally tractable system, consisting of single-domain antibodies (nanobodies) that target the model enzyme dihydrofolate reductase (DHFR) from Escherichia coli. A panel of thirty-five nanobodies was isolated using several strategies to increase nanobody diversity. The nanobodies exhibit a variety of effector properties, including partial inhibition, strong inhibition and stimulation of DHFR activity. Despite these diverse effector properties, chemical shift perturbation NMR epitope mapping identified only two epitope regions: epitope α is a new allosteric site that is over 10Å from the active site, while epitope β is located in the region of the Met20 loop. The structural basis for DHFR allosteric inhibition or activation upon nanobody binding to the α epitope was examined by solving the crystal structures of DHFR in complex with Nb113 (an allosteric inhibitor) and Nb179 (an allosteric activator). The structures suggest roles for conformational constraint and altered protein dynamics, but not epitope distortion, in the observed allosteric effects. The crystal structure of a β epitope region binder (ca1698) in complex with DHFR is also reported. Although CDR3 of ca1698 occupies the substrate binding site, ca1698 displays linear mixed inhibition kinetics instead of simple competitive inhibition kinetics. Two mechanisms are proposed to account for this apparent anomaly. Evidence for structural convergence of ca1698 and Nb216 during affinity maturation is also presented.

摘要

尽管变构效应抗体作为受体和酶的调节剂被广泛使用,但其作用机制的实验分析仍然极具挑战性。在此,我们在一个易于实验操作的系统中研究变构和非变构效应抗体的分子机制,该系统由靶向大肠杆菌二氢叶酸还原酶(DHFR)的单域抗体(纳米抗体)组成。通过多种策略分离出一组35种纳米抗体,以增加纳米抗体的多样性。这些纳米抗体表现出多种效应特性,包括对DHFR活性的部分抑制、强烈抑制和刺激。尽管有这些不同的效应特性,但化学位移扰动核磁共振表位图谱仅确定了两个表位区域:表位α是一个新的变构位点,距活性位点超过10Å,而表位β位于Met20环区域。通过解析与Nb113(一种变构抑制剂)和Nb179(一种变构激活剂)复合的DHFR的晶体结构,研究了纳米抗体与α表位结合后DHFR变构抑制或激活的结构基础。这些结构表明,在观察到的变构效应中,构象限制和蛋白质动力学改变起作用,而不是表位扭曲。还报道了与DHFR复合的β表位区域结合剂(ca1698)的晶体结构。尽管ca1698的互补决定区3占据了底物结合位点,但ca1698表现出线性混合抑制动力学,而不是简单的竞争性抑制动力学。提出了两种机制来解释这一明显的异常现象。还展示了亲和力成熟过程中ca1698和Nb216结构趋同的证据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验