Department of Bioengineering, Stanford University, Stanford, CA, USA.
ChEM-H, Stanford University, Stanford, CA, USA.
Nat Chem Biol. 2021 May;17(5):540-548. doi: 10.1038/s41589-021-00740-7. Epub 2021 Feb 18.
Precision tools for spatiotemporal control of cytoskeletal motor function are needed to dissect fundamental biological processes ranging from intracellular transport to cell migration and division. Direct optical control of motor speed and direction is one promising approach, but it remains a challenge to engineer controllable motors with desirable properties such as the speed and processivity required for transport applications in living cells. Here, we develop engineered myosin motors that combine large optical modulation depths with high velocities, and create processive myosin motors with optically controllable directionality. We characterize the performance of the motors using in vitro motility assays, single-molecule tracking and live-cell imaging. Bidirectional processive motors move efficiently toward the tips of cellular protrusions in the presence of blue light, and can transport molecular cargo in cells. Robust gearshifting myosins will further enable programmable transport in contexts ranging from in vitro active matter reconstitutions to microfabricated systems that harness molecular propulsion.
为了剖析从细胞内运输到细胞迁移和分裂等基础生物过程,我们需要用于细胞骨架马达功能的时空精确控制的精密工具。直接光学控制马达的速度和方向是一种很有前途的方法,但工程可控马达仍然具有挑战性,需要具有理想的特性,例如在活细胞中的运输应用所需的速度和行进性。在这里,我们开发了工程化肌球蛋白马达,它们将大的光学调制深度与高速结合在一起,并创造了具有可控制向性的行进性肌球蛋白马达。我们使用体外运动分析、单分子跟踪和活细胞成像来表征马达的性能。在蓝光存在的情况下,双向行进性马达能够有效地向细胞突起的尖端移动,并且可以在细胞内运输分子货物。稳健的齿轮切换肌球蛋白将进一步实现可编程的运输,从体外活性物质重构到利用分子推进的微加工系统等各种应用场景。