Suppr超能文献

利用同步辐射 X 射线荧光(SXRF)成像作为离子组学工具的方法学方法:以拟南芥为例。

Methodological approaches for using synchrotron X-ray fluorescence (SXRF) imaging as a tool in ionomics: examples from Arabidopsis thaliana.

机构信息

Dartmouth College, Department of Biological Sciences, Life Science Center, 78 College Street, Hanover, NH 03755.

Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Porto Alegre, Brasil.

出版信息

Metallomics. 2013 Sep;5(9):1133-45. doi: 10.1039/c3mt00120b.

Abstract

Here we present approaches for using multi-elemental imaging (specifically synchrotron X-ray fluorescence microscopy, SXRF) in ionomics, with examples using the model plant Arabidopsis thaliana. The complexity of each approach depends on the amount of a priori information available for the gene and/or phenotype being studied. Three approaches are outlined, which apply to experimental situations where a gene of interest has been identified but has an unknown phenotype (phenotyping), an unidentified gene is associated with a known phenotype (gene cloning) and finally, a screening approach, where both gene and phenotype are unknown. These approaches make use of open-access, online databases with which plant molecular genetics researchers working in the model plant Arabidopsis will be familiar, in particular the Ionomics Hub and online transcriptomic databases such as the Arabidopsis eFP browser. The approaches and examples we describe are based on the assumption that altering the expression of ion transporters can result in changes in elemental distribution. We provide methodological details on using elemental imaging to aid or accelerate gene functional characterization by narrowing down the search for candidate genes to the tissues in which elemental distributions are altered. We use synchrotron X-ray microprobes as a technique of choice, which can now be used to image all parts of an Arabidopsis plant in a hydrated state. We present elemental images of leaves, stem, root, siliques and germinating hypocotyls.

摘要

在这里,我们介绍了在离子组学中使用多元素成像(特别是同步加速器 X 射线荧光显微镜,SXRF)的方法,并以模式植物拟南芥为例进行了说明。每种方法的复杂性都取决于正在研究的基因和/或表型的先验信息的数量。我们概述了三种方法,它们适用于以下实验情况:感兴趣的基因已被确定但表型未知(表型分析)、与已知表型相关的未识别基因(基因克隆)以及最后一种筛选方法,其中基因和表型均未知。这些方法利用了植物分子遗传学研究人员在模式植物拟南芥中熟悉的开放获取在线数据库,特别是离子组学中心和在线转录组学数据库,如拟南芥 eFP 浏览器。我们描述的方法和示例基于这样的假设,即改变离子转运蛋白的表达会导致元素分布的变化。我们提供了使用元素成像来辅助或加速基因功能表征的方法细节,通过将候选基因的搜索范围缩小到元素分布发生变化的组织中。我们使用同步加速器 X 射线微探针作为首选技术,该技术现在可用于在水合状态下对拟南芥植物的所有部位进行成像。我们展示了叶片、茎、根、角果和萌发下胚轴的元素图像。

相似文献

9
Plant Ionomics: From Elemental Profiling to Environmental Adaptation.植物离子组学:从元素分析到环境适应。
Mol Plant. 2016 Jun 6;9(6):787-97. doi: 10.1016/j.molp.2016.05.003. Epub 2016 May 19.

引用本文的文献

7
M-BLANK: a program for the fitting of X-ray fluorescence spectra.M-BLANK:一个用于拟合X射线荧光光谱的程序。
J Synchrotron Radiat. 2019 Mar 1;26(Pt 2):497-503. doi: 10.1107/S1600577519000651. Epub 2019 Feb 19.
10
Common Bean Fe Biofortification Using Model Species' Lessons.利用模式物种的经验对普通菜豆进行铁生物强化
Front Plant Sci. 2017 Dec 22;8:2187. doi: 10.3389/fpls.2017.02187. eCollection 2017.

本文引用的文献

4
Biofortification for combating 'hidden hunger' for iron.生物强化:应对缺铁导致的“隐性饥饿”。
Trends Plant Sci. 2012 Jan;17(1):47-55. doi: 10.1016/j.tplants.2011.10.003. Epub 2011 Nov 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验