Liao Wei, Zhang Zhiqiang, Mantini Dante, Xu Qiang, Ji Gong-Jun, Zhang Han, Wang Jue, Wang Zhengge, Chen Guanghui, Tian Lei, Jiao Qing, Zang Yu-Feng, Lu Guangming
Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, 310015, China,
Brain Struct Funct. 2014 Nov;219(6):2001-15. doi: 10.1007/s00429-013-0619-2. Epub 2013 Aug 4.
Epilepsy is characterized by recurrent and temporary brain dysfunction due to discharges of interconnected groups of neurons. The brain of epilepsy patients has a dynamic bifurcation that switches between epileptic and normal states. The dysfunctional state involves large-scale brain networks. It is very important to understand the network mechanisms of seizure initiation, maintenance, and termination in epilepsy. Absence epilepsy provides a unique model for neuroimaging investigation on dynamic evolutions of brain networks over seizure repertoire. By using a dynamic functional connectivity and graph theoretical analyses to study absence seizures (AS), we aimed to obtain transition of network properties that account for seizure onset and offset. We measured resting-state functional magnetic resonance imaging and simultaneous electroencephalography (EEG) from children with AS. We used simultaneous EEG to define the preictal, ictal and postictal intervals of seizures. We measured dynamic connectivity maps of the thalamus network and the default mode network (DMN), as well as functional connectome topologies, during the three different seizure intervals. The analysis of dynamic changes of anti-correlation between the thalamus and the DMN is consistent with an inhibitory effect of seizures on the default mode of brain function, which gradually fades out after seizure onset. Also, we observed complex transitions of functional network topology, implicating adaptive reconfiguration of functional brain networks. In conclusion, our work revealed novel insights into modifications in large-scale functional connectome during AS, which may contribute to a better understanding the network mechanisms of state bifurcations in epileptogenesis.
癫痫的特征是由于相互连接的神经元群放电导致反复出现的暂时性脑功能障碍。癫痫患者的大脑存在一种动态分岔现象,在癫痫状态和正常状态之间切换。功能失调状态涉及大规模脑网络。了解癫痫发作起始、维持和终止的网络机制非常重要。失神癫痫为研究癫痫发作过程中脑网络动态演变的神经影像学研究提供了独特模型。通过使用动态功能连接和图论分析来研究失神发作(AS),我们旨在获得解释发作起始和终止的网络属性转变。我们测量了AS患儿的静息态功能磁共振成像和同步脑电图(EEG)。我们使用同步EEG来定义发作的发作前期、发作期和发作后期。我们测量了在三个不同发作间期丘脑网络和默认模式网络(DMN)的动态连接图以及功能连接组拓扑结构。丘脑与DMN之间反相关的动态变化分析与癫痫发作对脑功能默认模式的抑制作用一致,这种抑制作用在发作开始后逐渐消退。此外,我们观察到功能网络拓扑结构的复杂转变,这意味着功能性脑网络的适应性重新配置。总之,我们的工作揭示了关于AS期间大规模功能连接组改变的新见解,这可能有助于更好地理解癫痫发生过程中状态分岔的网络机制。