Department of Technology and Health, Italian National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy; Institute of Chemical Methodologies, National Research Council (CNR), P.le Aldo Moro 7, 00185, Rome, Italy.
Microsc Res Tech. 2013 Oct;76(10):1057-69. doi: 10.1002/jemt.22266. Epub 2013 Aug 3.
Scanning (SEM) and transmission electron microscopy (TEM) are two fundamental microscopic techniques widely applied in biological research for the study of ultrastructural cell components. With these methods, especially TEM, it is possible to detect and quantify the morphological and ultrastructural parameters of intracellular organelles (mitochondria, Golgi apparatus, lysosomes, peroxisomes, endosomes, endoplasmic reticulum, cytoskeleton, nucleus, etc.) in normal and pathological conditions. The study of intracellular vesicle compartmentalization is raising even more interest in the light of the importance of intracellular localization of mediators of the signaling in eliciting different biological responses. The study of the morphology of some intracellular organelles can supply information on the bio-energetic status of the cells. TEM has also a pivotal role in the determination of different types of programmed cell death. In fact, the visualization of autophagosomes and autophagolysosomes is essential to determine the occurrence of autophagy (and also to discriminate micro-autophagy from macro-autophagy), while the presence of fragmented nuclei and surface blebbing is characteristic of apoptosis. SEM is particularly useful for the study of the morphological features of the cells and, therefore, can shed light, for instance, on cell-cell interactions. After a brief introduction on the basic principles of the main electron microscopy methods, the article describes some cell components with the aim to demonstrate the huge role of the ultrastructural analysis played in the knowledge of the relationship between function and structure of the biological objects.
扫描电子显微镜(SEM)和透射电子显微镜(TEM)是两种广泛应用于生物研究的基本显微镜技术,用于研究超微结构的细胞成分。通过这些方法,特别是 TEM,有可能检测和量化细胞内细胞器(线粒体、高尔基体、溶酶体、过氧化物酶体、内体、内质网、细胞骨架、核等)在正常和病理条件下的形态和超微结构参数。细胞内囊泡区室化的研究由于信号转导介质在引发不同生物学反应中的细胞内定位的重要性而引起了更多的关注。一些细胞内细胞器的形态研究可以提供关于细胞生物能量状态的信息。TEM 在确定不同类型的程序性细胞死亡方面也起着关键作用。事实上,自噬体和自噬溶酶体的可视化对于确定自噬的发生(以及区分微自噬和巨自噬)是必不可少的,而碎片化核和表面起泡则是细胞凋亡的特征。SEM 特别有助于研究细胞的形态特征,因此可以阐明细胞-细胞相互作用等问题。在简要介绍主要电子显微镜方法的基本原理后,本文描述了一些细胞成分,旨在展示超微结构分析在了解生物对象的功能和结构之间关系方面所发挥的巨大作用。