Zenić Natasa, Foretić Nikola, Blazević Mateo
University of Split, Faculty of Kinesiology, Split, Croatia.
Coll Antropol. 2013 May;37 Suppl 2:153-9.
Previous studies evidently actualized nonlinear regressions as a step forward in defining the true nature of the relationships between anthropometric and physical fitness (PF) variables in trained subjects. In this paper we have sampled 1176 nontrained boys aged 14-16 years and tested them on (1) five anthropometric predictors, including: body height, body weight, triceps skinfold, upper arm circumference, and body mass index (BMI); and (2) five PF criteria measuring: static (static strength) and dynamic muscle endurance (repetitive strength), aerobic endurance, explosive strength, and coordination. Linear (y = a + bx) and nonlinear (second-order polynomial: y = a + bx + cx2) regressions were calculated simultaneously. BMI is found to be the most significant anthropometric predictor of PF status. Although the calculation and interpretation of nonlinear regressions are far more complicated in comparison to those of linear regressions, the variance of the criteria are in some cases far better explained through a significant nonlinear model. Even more, we have found evidence that an exclusive discussion of the linear correlation model could lead to serious interpretative mistakes. This mostly relates to the fact that a linear regression model implies a continuous relationship (dependence) between the predictor and the criteria, while a nonlinear one effectively identifies possible breakpoints in the regression line and consequently highlights the real nature of the relationship between variables.
先前的研究显然将非线性回归作为在界定训练受试者人体测量学与身体素质(PF)变量之间关系的真实性质方面向前迈出的一步。在本文中,我们对1176名14至16岁未受过训练的男孩进行了抽样,并对他们进行了以下测试:(1)五个人体测量预测指标,包括:身高、体重、肱三头肌皮褶厚度、上臂围和体重指数(BMI);以及(2)五项PF标准测量指标:静态(静态力量)和动态肌肉耐力(重复力量)、有氧耐力、爆发力和协调性。同时计算了线性(y = a + bx)和非线性(二阶多项式:y = a + bx + cx2)回归。发现BMI是PF状况最显著的人体测量预测指标。尽管与线性回归相比,非线性回归的计算和解释要复杂得多,但在某些情况下,通过显著的非线性模型可以更好地解释标准的方差。甚至,我们发现有证据表明,仅讨论线性相关模型可能会导致严重的解释错误。这主要与以下事实有关:线性回归模型意味着预测指标与标准之间存在连续关系(依赖性),而非线性模型则有效地识别回归线上可能的断点,从而突出变量之间关系的真实性质。