College of Nanoscale Science and Engineering, State University of New York, Albany, NY 12203, USA.
Nanotechnology. 2013 Sep 6;24(35):355202. doi: 10.1088/0957-4484/24/35/355202. Epub 2013 Aug 6.
We demonstrate improvements in the electrical performance of graphene interconnects with full encapsulation by lattice-matching layered insulator, hexagonal boron nitride (h-BN). A novel layer-based transfer method is developed to assemble the top passivating layer of h-BN on the graphene surface to construct the h-BN/graphene/h-BN heterostructures. The encapsulated graphene interconnects (EGIs) are characterized and compared with graphene interconnects on either SiO₂ or h-BN substrates with no top passivating h-BN layer. We observe significant improvements in both the maximum current density and breakdown voltage in EGIs. Compared with the uncovered structures, EGIs also show an appreciable increase (∼67%) in power density at breakdown. These improvements are achieved without degrading the carrier transport characteristics in graphene wires. In addition, EGIs exhibit a minimal environment impact, showing electrical behavior insensitive to ambient conditions.
我们通过晶格匹配的层状绝缘体六方氮化硼(h-BN)对完全封装的石墨烯互连进行了电性能的改进。开发了一种新的基于层的转移方法,将 h-BN 的顶层钝化层组装到石墨烯表面上,以构建 h-BN/石墨烯/h-BN 异质结构。对封装的石墨烯互连(EGI)进行了表征,并与没有顶层钝化 h-BN 层的 SiO₂或 h-BN 衬底上的石墨烯互连进行了比较。我们观察到 EGI 中的最大电流密度和击穿电压都有显著提高。与未覆盖的结构相比,EGI 在击穿时的功率密度也有明显提高(约 67%)。这些改进在不降低石墨烯线载流子输运特性的情况下实现。此外,EGI 表现出最小的环境影响,显示出对环境条件不敏感的电性能。