Suppr超能文献

石墨烯互连完全封装在层状绝缘六方氮化硼中。

Graphene interconnects fully encapsulated in layered insulator hexagonal boron nitride.

机构信息

College of Nanoscale Science and Engineering, State University of New York, Albany, NY 12203, USA.

出版信息

Nanotechnology. 2013 Sep 6;24(35):355202. doi: 10.1088/0957-4484/24/35/355202. Epub 2013 Aug 6.

Abstract

We demonstrate improvements in the electrical performance of graphene interconnects with full encapsulation by lattice-matching layered insulator, hexagonal boron nitride (h-BN). A novel layer-based transfer method is developed to assemble the top passivating layer of h-BN on the graphene surface to construct the h-BN/graphene/h-BN heterostructures. The encapsulated graphene interconnects (EGIs) are characterized and compared with graphene interconnects on either SiO₂ or h-BN substrates with no top passivating h-BN layer. We observe significant improvements in both the maximum current density and breakdown voltage in EGIs. Compared with the uncovered structures, EGIs also show an appreciable increase (∼67%) in power density at breakdown. These improvements are achieved without degrading the carrier transport characteristics in graphene wires. In addition, EGIs exhibit a minimal environment impact, showing electrical behavior insensitive to ambient conditions.

摘要

我们通过晶格匹配的层状绝缘体六方氮化硼(h-BN)对完全封装的石墨烯互连进行了电性能的改进。开发了一种新的基于层的转移方法,将 h-BN 的顶层钝化层组装到石墨烯表面上,以构建 h-BN/石墨烯/h-BN 异质结构。对封装的石墨烯互连(EGI)进行了表征,并与没有顶层钝化 h-BN 层的 SiO₂或 h-BN 衬底上的石墨烯互连进行了比较。我们观察到 EGI 中的最大电流密度和击穿电压都有显著提高。与未覆盖的结构相比,EGI 在击穿时的功率密度也有明显提高(约 67%)。这些改进在不降低石墨烯线载流子输运特性的情况下实现。此外,EGI 表现出最小的环境影响,显示出对环境条件不敏感的电性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验