Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, USA.
Neuropsychopharmacology. 2014 Feb;39(3):528-37. doi: 10.1038/npp.2013.190. Epub 2013 Aug 6.
The molecular mechanisms of schizophrenia have been under investigation for decades; however, the exact causes of this debilitating neuropsychiatric disorder are still unknown. Previous studies have identified multiple affected neurotransmitter systems, brain regions, and cell types, each making a unique contribution to symptom presentation and pathophysiology. Numerous studies have identified gene and protein expression changes in schizophrenia, but the role of post-translational modifications, specifically N-glycosylation, has only recently become a target of investigation. N-glycosylation of molecules associated with glutamatergic neurotransmission is disrupted in schizophrenia, but it was unknown if these alterations are exclusive to the glutamatergic system or due to a more generalized deficit.In normal human cortex, we found evidence for N-glycosylation of the α1, β1, and β2 γ-aminobutyric type A receptor (GABAAR) subunits using deglycosylation protein shift assays. This was confirmed with lectin affinity assays that revealed glycan attachment on the α1, α4, and β1-3 GABAAR subunits. Examining GABAAR subunit N-glycosylation in matched pairs of schizophrenia (N=14) and comparison (N=14) of superior temporal gyrus revealed a smaller molecular mass of immature N-glycans on the α1 subunit, more immature N-glycosylation of the 49-kDa β1 subunit isoform, and altered total N-glycosylation of the β2 GABAAR subunit in schizophrenia. Measures of altered N-glycosylation of the β1 and β2 subunits were confounded by an increased apparent molecular mass of all β1 and β2 subunit isoforms in schizophrenia. Although N-glycosylation of α1, β1, and β2 were all changed in schizophrenia, the concentrations of GABAAR subunits themselves were unchanged. These findings suggest that disruptions of N-glycosylation in schizophrenia are not exclusive to glutamate and may indicate a potential disruption of a central cell signaling process in this disorder.
精神分裂症的分子机制已经研究了几十年;然而,这种使人衰弱的神经精神疾病的确切原因仍不清楚。先前的研究已经确定了多个受影响的神经递质系统、大脑区域和细胞类型,每个系统都对症状表现和病理生理学有独特的贡献。许多研究已经确定了精神分裂症中基因和蛋白质表达的变化,但翻译后修饰,特别是 N-糖基化的作用,最近才成为研究的目标。与谷氨酸能神经递质相关的分子的 N-糖基化在精神分裂症中被打乱,但尚不清楚这些改变是否仅限于谷氨酸能系统,还是由于更普遍的缺陷。在正常人类皮层中,我们使用去糖基化蛋白迁移测定法发现了与 γ-氨基丁酸 A 型受体 (GABAAR) 亚基的 α1、β1 和 β2 相关的 N-糖基化的证据。这通过凝集素亲和测定得到了证实,该测定揭示了 α1、α4 和 β1-3 GABAAR 亚基上聚糖的附着。在匹配的精神分裂症(N=14)和比较(N=14)的颞上回中检查 GABAAR 亚基 N-糖基化,发现 α1 亚基上不成熟 N-聚糖的分子质量较小,49kDa β1 亚基同工型的更不成熟 N-糖基化,以及 β2 GABAAR 亚基的总 N-糖基化改变。在精神分裂症中,β1 和 β2 亚基改变的 N-糖基化的测量受到所有β1 和β2 亚基同工型在精神分裂症中表观分子质量增加的影响。尽管 α1、β1 和 β2 的 N-糖基化在精神分裂症中均发生改变,但 GABAAR 亚基本身的浓度并未改变。这些发现表明,精神分裂症中 N-糖基化的破坏不仅限于谷氨酸,并且可能表明该疾病中中央细胞信号转导过程的潜在破坏。