Department of Plant Breeding and Genetics, Cornell University, 162 Emerson Hall, Ithaca, NY, 14853-1901, USA,
Theor Appl Genet. 2013 Nov;126(11):2699-716. doi: 10.1007/s00122-013-2166-x. Epub 2013 Aug 6.
Genotyping by sequencing (GBS) is the latest application of next-generation sequencing protocols for the purposes of discovering and genotyping SNPs in a variety of crop species and populations. Unlike other high-density genotyping technologies which have mainly been applied to general interest "reference" genomes, the low cost of GBS makes it an attractive means of saturating mapping and breeding populations with a high density of SNP markers. One barrier to the widespread use of GBS has been the difficulty of the bioinformatics analysis as the approach is accompanied by a high number of erroneous SNP calls which are not easily diagnosed or corrected. In this study, we use a 384-plex GBS protocol to add 30,984 markers to an indica (IR64) × japonica (Azucena) mapping population consisting of 176 recombinant inbred lines of rice (Oryza sativa) and we release our imputation and error correction pipeline to address initial GBS data sparsity and error, and streamline the process of adding SNPs to RIL populations. Using the final imputed and corrected dataset of 30,984 markers, we were able to map recombination hot and cold spots and regions of segregation distortion across the genome with a high degree of accuracy, thus identifying regions of the genome containing putative sterility loci. We mapped QTL for leaf width and aluminum tolerance, and were able to identify additional QTL for both phenotypes when using the full set of 30,984 SNPs that were not identified using a subset of only 1,464 SNPs, including a previously unreported QTL for aluminum tolerance located directly within a recombination hotspot on chromosome 1. These results suggest that adding a high density of SNP markers to a mapping or breeding population through GBS has a great value for numerous applications in rice breeding and genetics research.
测序基因型分析(GBS)是新一代测序技术的最新应用,旨在发现和分析各种作物物种和群体中的 SNP,并对其进行基因分型。与主要应用于一般“参考”基因组的其他高密度基因分型技术不同,GBS 的低成本使其成为一种极具吸引力的方法,可以用高密度的 SNP 标记饱和作图和育种群体。GBS 广泛应用的一个障碍一直是生物信息学分析的困难,因为该方法伴随着大量的错误 SNP 调用,这些调用不容易诊断或纠正。在本研究中,我们使用了 384 plex GBS 方案,将 30984 个标记添加到一个由 176 个重组自交系水稻组成的籼稻(IR64)×粳稻(Azucena)作图群体中,并发布了我们的插补和纠错流水线,以解决初始 GBS 数据稀疏和错误问题,并简化向 RIL 群体添加 SNP 的过程。使用最终的 30984 个标记的插补和校正数据集,我们能够以高度精确的准确度绘制整个基因组的重组热点和冷点以及分离失真区域,从而鉴定出包含潜在不育基因座的基因组区域。我们定位了叶片宽度和耐铝性的 QTL,并能够在使用包含 30984 个 SNP 的全数据集时识别出这两个表型的其他 QTL,而在仅使用 1464 个 SNP 的子集时则无法识别这些 QTL,包括位于第 1 号染色体重组热点内的耐铝性的一个先前未报道的 QTL。这些结果表明,通过 GBS 将高密度的 SNP 标记添加到作图或育种群体中,对于水稻育种和遗传学研究中的许多应用具有重要价值。