Becraft Philip W
Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.
Methods Mol Biol. 2013;1057:21-42. doi: 10.1007/978-1-62703-568-2_3.
Genetic mosaics, or chimeras, are individual organisms composed of cells or tissues of two or more distinct genotypes. They are experimentally useful for addressing several key biological questions. These include fate mapping through analysis of marked clonal lineages, analyzing cell or tissue interactions such as the induction of developmental events, and analyzing whether a gene acts cell autonomously. Genetic mosaics can arise in many ways, including through the action of transposable elements. Naturally occurring transposons can generate genetic mosaics by somatically inserting into a gene to cause a mutant sector, somatically excising from a mutant gene to create a revertant wild-type sector, or causing chromosomal breaks or rearrangements leading to loss of a gene or genes. Transposons have also been cleverly engineered to allow the generation of marked somatic sectors, sometimes in controlled ways. Here we review ways in which transposon-induced genetic mosaics have been used experimentally, the various methods that have been used, and general considerations for designing genetic mosaic studies using transposon methods.
遗传镶嵌体,即嵌合体,是由两种或更多不同基因型的细胞或组织构成的个体生物。它们在实验中对于解决几个关键的生物学问题很有用。这些问题包括通过对标记的克隆谱系进行分析来进行命运图谱绘制、分析细胞或组织间的相互作用(如发育事件的诱导),以及分析基因是否细胞自主发挥作用。遗传镶嵌体可以通过多种方式产生,包括转座元件的作用。天然存在的转座子可以通过体细胞插入基因导致突变区段、从突变基因中体细胞切除以产生回复野生型区段,或导致染色体断裂或重排从而导致一个或多个基因缺失,来产生遗传镶嵌体。转座子也经过巧妙设计,有时以可控的方式产生标记的体细胞区段。在这里,我们综述了转座子诱导的遗传镶嵌体在实验中的使用方式、所使用的各种方法,以及使用转座子方法设计遗传镶嵌体研究的一般注意事项。