Blackett Laboratory, Imperial College London, London, UK ; Clarendon Laboratory, University of Oxford, Oxford, UK.
Interface Focus. 2012 Aug 6;2(4):522-8. doi: 10.1098/rsfs.2011.0109. Epub 2012 Mar 28.
Recent advances in the spectroscopy of biomolecules have highlighted the possibility of quantum coherence playing an active role in biological energy transport. The revelation that quantum coherence can survive in the hot and wet environment of biology has generated a lively debate across both the physics and biology communities. In particular, it remains unclear to what extent non-trivial quantum effects are used in biology and what advantage, if any, they afford. We propose an analogue quantum simulator, based on currently available techniques in ultra-cold atom physics, to study a model of energy and electron transport based on the Holstein Hamiltonian. By simulating the salient aspects of a biological system in a tunable laboratory set-up, we hope to gain insight into the validity of several theoretical models of biological quantum transport in a variety of relevant parameter regimes.
生物分子光谱学的最新进展强调了量子相干在生物能量传输中发挥积极作用的可能性。量子相干在生物学的热湿环境中得以存活的发现,在物理学和生物学两个领域都引发了激烈的争论。特别是,在生物学中量子效应的重要程度以及它们提供的任何优势尚不清楚。我们提出了一种基于目前超冷原子物理学中可用技术的模拟量子模拟器,以研究基于 Holstein 哈密顿量的能量和电子输运模型。通过在可调谐的实验室设置中模拟生物系统的显著方面,我们希望深入了解在各种相关参数范围内几种生物量子输运理论模型的有效性。