Suppr超能文献

快速准确地检测多个数量性状基因座。

Fast and accurate detection of multiple quantitative trait Loci.

作者信息

Nettelblad Carl, Mahjani Behrang, Holmgren Sverker

机构信息

Division of Scientific Computing, Department of Information Technology, Uppsala University, Uppsala, Sweden.

出版信息

J Comput Biol. 2013 Sep;20(9):687-702. doi: 10.1089/cmb.2012.0242. Epub 2013 Aug 6.

Abstract

We present a new computational scheme that enables efficient and reliable quantitative trait loci (QTL) scans for experimental populations. Using a standard brute-force exhaustive search effectively prohibits accurate QTL scans involving more than two loci to be performed in practice, at least if permutation testing is used to determine significance. Some more elaborate global optimization approaches, for example, DIRECT have been adopted earlier to QTL search problems. Dramatic speedups have been reported for high-dimensional scans. However, since a heuristic termination criterion must be used in these types of algorithms, the accuracy of the optimization process cannot be guaranteed. Indeed, earlier results show that a small bias in the significance thresholds is sometimes introduced. Our new optimization scheme, PruneDIRECT, is based on an analysis leading to a computable (Lipschitz) bound on the slope of a transformed objective function. The bound is derived for both infinite- and finite-size populations. Introducing a Lipschitz bound in DIRECT leads to an algorithm related to classical Lipschitz optimization. Regions in the search space can be permanently excluded (pruned) during the optimization process. Heuristic termination criteria can thus be avoided. Hence, PruneDIRECT has a well-defined error bound and can in practice be guaranteed to be equivalent to a corresponding exhaustive search. We present simulation results that show that for simultaneous mapping of three QTLS using permutation testing, PruneDIRECT is typically more than 50 times faster than exhaustive search. The speedup is higher for stronger QTL. This could be used to quickly detect strong candidate eQTL networks.

摘要

我们提出了一种新的计算方案,该方案能够对实验群体进行高效且可靠的数量性状基因座(QTL)扫描。实际上,使用标准的暴力穷举搜索有效地禁止了对涉及两个以上基因座的准确QTL扫描,至少在使用置换检验来确定显著性时是这样。一些更精细的全局优化方法,例如DIRECT,此前已被应用于QTL搜索问题。对于高维扫描,已有显著加速的报道。然而,由于在这类算法中必须使用启发式终止准则,因此无法保证优化过程的准确性。事实上,早期结果表明有时会在显著性阈值中引入小偏差。我们的新优化方案PruneDIRECT基于一种分析,该分析得出了变换后的目标函数斜率的可计算(利普希茨)界。该界是针对无限和有限大小的群体推导得出的。在DIRECT中引入利普希茨界会导致一种与经典利普希茨优化相关的算法。在优化过程中,可以永久排除(修剪)搜索空间中的区域。因此可以避免启发式终止准则。所以,PruneDIRECT有明确的误差界,并且在实践中可以保证等同于相应的穷举搜索。我们给出的模拟结果表明,对于使用置换检验同时定位三个QTL,PruneDIRECT通常比穷举搜索快50倍以上。对于更强的QTL,加速效果更高。这可用于快速检测强候选eQTL网络。

相似文献

1
Fast and accurate detection of multiple quantitative trait Loci.快速准确地检测多个数量性状基因座。
J Comput Biol. 2013 Sep;20(9):687-702. doi: 10.1089/cmb.2012.0242. Epub 2013 Aug 6.
6
Methodological aspects of the genetic dissection of gene expression.基因表达遗传剖析的方法学方面。
Bioinformatics. 2005 May 15;21(10):2383-93. doi: 10.1093/bioinformatics/bti241.

本文引用的文献

6
Empirical threshold values for quantitative trait mapping.数量性状定位的经验阈值
Genetics. 1994 Nov;138(3):963-71. doi: 10.1093/genetics/138.3.963.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验