Suppr超能文献

一种用于预测乳腺癌对新辅助化疗反应的机械耦联反应扩散模型。

A mechanically coupled reaction-diffusion model for predicting the response of breast tumors to neoadjuvant chemotherapy.

机构信息

Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.

出版信息

Phys Med Biol. 2013 Sep 7;58(17):5851-66. doi: 10.1088/0031-9155/58/17/5851. Epub 2013 Aug 6.

Abstract

There is currently a paucity of reliable techniques for predicting the response of breast tumors to neoadjuvant chemotherapy. The standard approach is to monitor gross changes in tumor size as measured by physical exam and/or conventional imaging, but these methods generally do not show whether a tumor is responding until the patient has received many treatment cycles. One promising approach to address this clinical need is to integrate quantitative in vivo imaging data into biomathematical models of tumor growth in order to predict eventual response based on early measurements during therapy. In this work, we illustrate a novel biomechanical mathematical modeling approach in which contrast enhanced and diffusion weighted magnetic resonance imaging data acquired before and after the first cycle of neoadjuvant therapy are used to calibrate a patient-specific response model which subsequently is used to predict patient outcome at the conclusion of therapy. We present a modification of the reaction-diffusion tumor growth model whereby mechanical coupling to the surrounding tissue stiffness is incorporated via restricted cell diffusion. We use simulations and experimental data to illustrate how incorporating tissue mechanical properties leads to qualitatively and quantitatively different tumor growth patterns than when such properties are ignored. We apply the approach to patient data in a preliminary dataset of eight patients exhibiting a varying degree of responsiveness to neoadjuvant therapy, and we show that the mechanically coupled reaction-diffusion tumor growth model, when projected forward, more accurately predicts residual tumor burden at the conclusion of therapy than the non-mechanically coupled model. The mechanically coupled model predictions exhibit a significant correlation with data observations (PCC = 0.84, p < 0.01), and show a statistically significant >4 fold reduction in model/data error (p = 0.02) as compared to the non-mechanically coupled model.

摘要

目前,预测乳腺癌对新辅助化疗反应的可靠技术还很缺乏。标准方法是通过体检和/或常规成像来监测肿瘤大小的明显变化,但这些方法通常在患者接受了多个治疗周期后才显示肿瘤是否有反应。解决这一临床需求的一种很有前途的方法是将定量的体内成像数据整合到肿瘤生长的生物数学模型中,以便根据治疗期间的早期测量来预测最终的反应。在这项工作中,我们展示了一种新的生物力学数学建模方法,该方法使用新辅助治疗第一个周期前后获得的对比增强和扩散加权磁共振成像数据来校准患者特异性反应模型,然后该模型用于预测治疗结束时的患者预后。我们对反应-扩散肿瘤生长模型进行了修改,通过限制细胞扩散将机械耦合纳入周围组织硬度。我们使用模拟和实验数据来说明纳入组织力学特性如何导致与忽略这些特性时不同的肿瘤生长模式。我们将该方法应用于初步数据集的 8 名患者的数据,这些患者对新辅助治疗的反应程度不同,结果表明,当向前预测时,与非机械耦合模型相比,机械耦合反应-扩散肿瘤生长模型更准确地预测治疗结束时的残余肿瘤负担。机械耦合模型的预测与数据观察具有显著的相关性(PCC=0.84,p<0.01),与非机械耦合模型相比,模型/数据误差显著降低了>4 倍(p=0.02)。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验