Suppr超能文献

社区环境下乳腺癌患者的定量磁共振成像与肿瘤预测。

Quantitative magnetic resonance imaging and tumor forecasting of breast cancer patients in the community setting.

机构信息

Oden Institute for Computational Engineering and Sciences, Austin, TX, USA.

Livestrong Cancer Institutes, Austin, TX, USA.

出版信息

Nat Protoc. 2021 Nov;16(11):5309-5338. doi: 10.1038/s41596-021-00617-y. Epub 2021 Sep 22.

Abstract

This protocol describes a complete data acquisition, analysis and computational forecasting pipeline for employing quantitative MRI data to predict the response of locally advanced breast cancer to neoadjuvant therapy in a community-based care setting. The methodology has previously been successfully applied to a heterogeneous patient population. The protocol details how to acquire the necessary images followed by registration, segmentation, quantitative perfusion and diffusion analysis, model calibration, and prediction. The data collection portion of the protocol requires ~25 min of scanning, postprocessing requires 2-3 h, and the model calibration and prediction components require ~10 h per patient depending on tumor size. The response of individual breast cancer patients to neoadjuvant therapy is forecast by application of a biophysical, reaction-diffusion mathematical model to these data. Successful application of the protocol results in coregistered MRI data from at least two scan visits that quantifies an individual tumor's size, cellularity and vascular properties. This enables a spatially resolved prediction of how a particular patient's tumor will respond to therapy. Expertise in image acquisition and analysis, as well as the numerical solution of partial differential equations, is required to carry out this protocol.

摘要

本方案描述了一个完整的数据采集、分析和计算预测管道,用于利用定量 MRI 数据来预测在社区护理环境中局部晚期乳腺癌对新辅助治疗的反应。该方法以前已成功应用于异质患者群体。该方案详细说明了如何获取必要的图像,然后进行注册、分割、定量灌注和扩散分析、模型校准和预测。方案的数据采集部分需要大约 25 分钟的扫描时间,后处理需要 2-3 小时,而模型校准和预测部分每个患者需要大约 10 小时,具体取决于肿瘤大小。通过将生物物理、反应扩散数学模型应用于这些数据,对个体乳腺癌患者对新辅助治疗的反应进行预测。成功实施该方案可得到来自至少两次扫描访问的配准 MRI 数据,这些数据量化了个体肿瘤的大小、细胞密度和血管特性。这使得能够对特定患者的肿瘤对治疗的反应进行空间分辨预测。执行该方案需要在图像采集和分析以及偏微分方程的数值解方面具备专业知识。

相似文献

引用本文的文献

本文引用的文献

6
Magnetic resonance imaging of mean cell size in human breast tumors.人类乳腺肿瘤平均细胞大小的磁共振成像
Magn Reson Med. 2020 Jun;83(6):2002-2014. doi: 10.1002/mrm.28056. Epub 2019 Nov 25.
8
The 2019 mathematical oncology roadmap.2019 年数学肿瘤学路线图。
Phys Biol. 2019 Jun 19;16(4):041005. doi: 10.1088/1478-3975/ab1a09.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验