School of Information Systems Management, H John Heinz III College, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.
H John Heinz III College, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.
J Am Med Inform Assoc. 2014 Oct;21(e2):e304-11. doi: 10.1136/amiajnl-2013-002316. Epub 2014 Mar 27.
Evidence indicates that users incur significant physical and cognitive costs in the use of order sets, a core feature of computerized provider order entry systems. This paper develops data-driven approaches for automating the construction of order sets that match closely with user preferences and workflow while minimizing physical and cognitive workload.
We developed and tested optimization-based models embedded with clustering techniques using physical and cognitive click cost criteria. By judiciously learning from users' actual actions, our methods identify items for constituting order sets that are relevant according to historical ordering data and grouped on the basis of order similarity and ordering time. We evaluated performance of the methods using 47,099 orders from the year 2011 for asthma, appendectomy and pneumonia management in a pediatric inpatient setting.
In comparison with existing order sets, those developed using the new approach significantly reduce the physical and cognitive workload associated with usage by 14-52%. This approach is also capable of accommodating variations in clinical conditions that affect order set usage and development.
There is a critical need to investigate the cognitive complexity imposed on users by complex clinical information systems, and to design their features according to 'human factors' best practices. Optimizing order set generation using cognitive cost criteria introduces a new approach that can potentially improve ordering efficiency, reduce unintended variations in order placement, and enhance patient safety.
We demonstrate that data-driven methods offer a promising approach for designing order sets that are generalizable, data-driven, condition-based, and up to date with current best practices.
有证据表明,用户在使用医嘱套餐(计算机化医嘱输入系统的核心功能)时会承受显著的身体和认知负担。本文开发了数据驱动的方法,用于自动构建与用户偏好和工作流程匹配度高、同时最小化身体和认知工作量的医嘱套餐。
我们使用基于优化的模型并结合聚类技术,以物理和认知点击成本标准为依据进行开发和测试。通过明智地从用户的实际操作中学习,我们的方法可以根据历史医嘱数据识别出相关的医嘱套餐组成项,并根据医嘱相似性和医嘱时间进行分组。我们使用了 2011 年在儿科住院环境下用于哮喘、阑尾切除术和肺炎管理的 47099 个医嘱来评估方法的性能。
与现有医嘱套餐相比,使用新方法开发的医嘱套餐在使用时可将身体和认知工作量分别降低 14%至 52%。该方法还能够适应影响医嘱套餐使用和开发的临床条件变化。
迫切需要研究复杂临床信息系统给用户带来的认知复杂性,并根据“人为因素”最佳实践来设计其功能。使用认知成本标准来优化医嘱套餐生成引入了一种新方法,该方法可能会提高医嘱效率,减少医嘱位置的意外变化,并提高患者安全性。
我们证明了数据驱动的方法为设计通用、数据驱动、基于条件且与当前最佳实践保持一致的医嘱套餐提供了一种有前途的方法。