Suppr超能文献

电子健康记录 (EHR) 系统中的数据空白:COVID-19 大流行期间问题清单完整性的审核。

Data gaps in electronic health record (EHR) systems: An audit of problem list completeness during the COVID-19 pandemic.

机构信息

UCL Medical School, University College London, Gower Street, London, WC1E 6BT, UK; EHRS Directorate, University College London Hospitals NHS Foundation Trust, 250 Euston Rd, London, NW1 2PG, UK.

EHRS Directorate, University College London Hospitals NHS Foundation Trust, 250 Euston Rd, London, NW1 2PG, UK; Clinical and Research Informatics Unit, UCL/UCLH NIHR Biomedical Research Centre, UCL Institute of Health Informatics, 222 Euston Road, London, NW1 2DA, UK.

出版信息

Int J Med Inform. 2021 Jun;150:104452. doi: 10.1016/j.ijmedinf.2021.104452. Epub 2021 Apr 1.

Abstract

OBJECTIVE

To evaluate the completeness of diagnosis recording in problem lists in a hospital electronic health record (EHR) system during the COVID-19 pandemic.

DESIGN

Retrospective chart review with manual review of free text electronic case notes.

SETTING

Major teaching hospital trust in London, one year after the launch of a comprehensive EHR system (Epic), during the first peak of the COVID-19 pandemic in the UK.

PARTICIPANTS

516 patients with suspected or confirmed COVID-19.

MAIN OUTCOME MEASURES

Percentage of diagnoses already included in the structured problem list.

RESULTS

Prior to review, these patients had a combined total of 2841 diagnoses recorded in their EHR problem lists. 1722 additional diagnoses were identified, increasing the mean number of recorded problems per patient from 5.51 to 8.84. The overall percentage of diagnoses originally included in the problem list was 62.3% (2841 / 4563, 95% confidence interval 60.8%, 63.7%).

CONCLUSIONS

Diagnoses and other clinical information stored in a structured way in electronic health records is extremely useful for supporting clinical decisions, improving patient care and enabling better research. However, recording of medical diagnoses on the structured problem list for inpatients is incomplete, with almost 40% of important diagnoses mentioned only in the free text notes.

摘要

目的

评估 COVID-19 大流行期间医院电子健康记录 (EHR) 系统中问题列表中诊断记录的完整性。

设计

回顾性图表审查,对电子病历的自由文本进行手动审查。

地点

伦敦一家大型教学医院信托基金,在英国 COVID-19 大流行的第一个高峰期期间,在全面推出 EHR 系统 (Epic) 一年后。

参与者

516 名疑似或确诊 COVID-19 的患者。

主要观察指标

已包含在结构化问题列表中的诊断的百分比。

结果

在审查之前,这些患者的 EHR 问题列表中共记录了 2841 个诊断。确定了 1722 个额外的诊断,使每位患者记录的诊断数量从 5.51 增加到 8.84。最初包含在问题列表中的诊断的总体百分比为 62.3%(2841 / 4563,95%置信区间 60.8%,63.7%)。

结论

以电子方式以结构化方式存储的诊断和其他临床信息对于支持临床决策、改善患者护理和实现更好的研究非常有用。然而,住院患者结构化问题列表中记录的医疗诊断并不完整,近 40%的重要诊断仅在自由文本记录中提到。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b99/9759969/3009c5bc1a76/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验