Suppr超能文献

细菌分裂蛋白 FtsZ 和 ZipA 诱导囊泡收缩和细胞膜内陷。

Bacterial division proteins FtsZ and ZipA induce vesicle shrinkage and cell membrane invagination.

机构信息

From the Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), 28040 Madrid, Spain.

出版信息

J Biol Chem. 2013 Sep 13;288(37):26625-34. doi: 10.1074/jbc.M113.491688. Epub 2013 Aug 6.

Abstract

Permeable vesicles containing the proto-ring anchoring ZipA protein shrink when FtsZ, the main cell division protein, polymerizes in the presence of GTP. Shrinkage, resembling the constriction of the cytoplasmic membrane, occurs at ZipA densities higher than those found in the cell and is modulated by the dynamics of the FtsZ polymer. In vivo, an excess of ZipA generates multilayered membrane inclusions within the cytoplasm and causes the loss of the membrane function as a permeability barrier. Overproduction of ZipA at levels that block septation is accompanied by the displacement of FtsZ and two additional division proteins, FtsA and FtsN, from potential septation sites to clusters that colocalize with ZipA near the membrane. The results show that elementary constriction events mediated by defined elements involved in cell division can be evidenced both in bacteria and in vesicles.

摘要

当主要的细胞分裂蛋白 FtsZ 在 GTP 的存在下聚合时,含有原环锚定 ZipA 蛋白的可渗透小泡会收缩。这种收缩类似于细胞质膜的缢缩,发生在 ZipA 密度高于细胞中的密度,并且受到 FtsZ 聚合物动力学的调节。在体内,过多的 ZipA 会在细胞质内产生多层膜内含物,并导致膜功能丧失作为渗透屏障。ZipA 的过度产生会阻止分隔,同时还会导致 FtsZ 和另外两种分裂蛋白 FtsA 和 FtsN 从潜在的分隔位点转移到与 ZipA 一起在膜附近聚集的簇中。结果表明,由参与细胞分裂的特定元件介导的基本缢缩事件既可以在细菌中也可以在小泡中得到证明。

相似文献

1
Bacterial division proteins FtsZ and ZipA induce vesicle shrinkage and cell membrane invagination.
J Biol Chem. 2013 Sep 13;288(37):26625-34. doi: 10.1074/jbc.M113.491688. Epub 2013 Aug 6.
3
Nano-encapsulated Escherichia coli Divisome Anchor ZipA, and in Complex with FtsZ.
Sci Rep. 2019 Dec 10;9(1):18712. doi: 10.1038/s41598-019-54999-x.
4
A specific role for the ZipA protein in cell division: stabilization of the FtsZ protein.
J Biol Chem. 2013 Feb 1;288(5):3219-26. doi: 10.1074/jbc.M112.434944. Epub 2012 Dec 11.
5
Dynamic interaction of the Escherichia coli cell division ZipA and FtsZ proteins evidenced in nanodiscs.
J Biol Chem. 2012 Aug 31;287(36):30097-104. doi: 10.1074/jbc.M112.388959. Epub 2012 Jul 11.
6
ZipA Uses a Two-Pronged FtsZ-Binding Mechanism Necessary for Cell Division.
mBio. 2021 Dec 21;12(6):e0252921. doi: 10.1128/mbio.02529-21. Epub 2021 Dec 14.
7
Recruitment of ZipA to the division site by interaction with FtsZ.
Mol Microbiol. 1999 Mar;31(6):1853-61. doi: 10.1046/j.1365-2958.1999.01322.x.
8
FtsZ Polymers Tethered to the Membrane by ZipA Are Susceptible to Spatial Regulation by Min Waves.
Biophys J. 2015 May 5;108(9):2371-83. doi: 10.1016/j.bpj.2015.03.031.
9
Reversible Membrane Tethering by ZipA Determines FtsZ Polymerization in Two and Three Dimensions.
Biochemistry. 2019 Sep 24;58(38):4003-4015. doi: 10.1021/acs.biochem.9b00378. Epub 2019 Sep 9.
10
ZipA and FtsA* stabilize FtsZ-GDP miniring structures.
Sci Rep. 2017 Jun 16;7(1):3650. doi: 10.1038/s41598-017-03983-4.

引用本文的文献

1
In vitro assembly, positioning and contraction of a division ring in minimal cells.
Nat Commun. 2022 Oct 15;13(1):6098. doi: 10.1038/s41467-022-33679-x.
2
Towards a synthetic cell cycle.
Nat Commun. 2021 Jul 26;12(1):4531. doi: 10.1038/s41467-021-24772-8.
4
FtsZ Interactions and Biomolecular Condensates as Potential Targets for New Antibiotics.
Antibiotics (Basel). 2021 Mar 4;10(3):254. doi: 10.3390/antibiotics10030254.
5
Toward long-lasting artificial cells that better mimic natural living cells.
Emerg Top Life Sci. 2019 Nov 11;3(5):597-607. doi: 10.1042/ETLS20190026.
6
Cell-free biogenesis of bacterial division proto-rings that can constrict liposomes.
Commun Biol. 2020 Sep 30;3(1):539. doi: 10.1038/s42003-020-01258-9.
7
Transcription and Translation in Cytomimetic Protocells Perform Most Efficiently at Distinct Macromolecular Crowding Conditions.
ACS Synth Biol. 2020 Oct 16;9(10):2797-2807. doi: 10.1021/acssynbio.0c00330. Epub 2020 Oct 5.
8
FtsZ Reorganization Facilitates Deformation of Giant Vesicles in Microfluidic Traps*.
Angew Chem Int Ed Engl. 2020 Nov 23;59(48):21372-21376. doi: 10.1002/anie.202001928. Epub 2020 Sep 17.
9
Nano-encapsulated Escherichia coli Divisome Anchor ZipA, and in Complex with FtsZ.
Sci Rep. 2019 Dec 10;9(1):18712. doi: 10.1038/s41598-019-54999-x.
10
Synthetic cell division via membrane-transforming molecular assemblies.
BMC Biol. 2019 May 24;17(1):43. doi: 10.1186/s12915-019-0665-1.

本文引用的文献

1
Intrinsic disorder of the bacterial cell division protein ZipA: coil-to-brush conformational transition.
FASEB J. 2013 Aug;27(8):3363-75. doi: 10.1096/fj.12-224337. Epub 2013 May 9.
2
Excess membrane synthesis drives a primitive mode of cell proliferation.
Cell. 2013 Feb 28;152(5):997-1007. doi: 10.1016/j.cell.2013.01.043.
4
Towards a bottom-up reconstitution of bacterial cell division.
Trends Cell Biol. 2012 Dec;22(12):634-43. doi: 10.1016/j.tcb.2012.09.003. Epub 2012 Oct 12.
5
Dynamic interaction of the Escherichia coli cell division ZipA and FtsZ proteins evidenced in nanodiscs.
J Biol Chem. 2012 Aug 31;287(36):30097-104. doi: 10.1074/jbc.M112.388959. Epub 2012 Jul 11.
6
7
Giant vesicles "colonies": a model for primitive cell communities.
Chembiochem. 2012 Jul 9;13(10):1497-502. doi: 10.1002/cbic.201200133. Epub 2012 Jun 11.
8
FtsA forms actin-like protofilaments.
EMBO J. 2012 May 16;31(10):2249-60. doi: 10.1038/emboj.2012.76. Epub 2012 Mar 30.
9
Physics of bacterial morphogenesis.
Microbiol Mol Biol Rev. 2011 Dec;75(4):543-65. doi: 10.1128/MMBR.00006-11.
10
Transformation of actoHMM assembly confined in cell-sized liposome.
Langmuir. 2011 Sep 20;27(18):11528-35. doi: 10.1021/la2016287. Epub 2011 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验