Martos Ariadna, Raso Ana, Jiménez Mercedes, Petrášek Zdeněk, Rivas Germán, Schwille Petra
Max Planck Institute of Biochemistry, Martinsried, Germany.
Max Planck Institute of Biochemistry, Martinsried, Germany; Centro de Investigaciones Biológicas, CSIC, Madrid, Spain.
Biophys J. 2015 May 5;108(9):2371-83. doi: 10.1016/j.bpj.2015.03.031.
Bacterial cell division is driven by an FtsZ ring in which the FtsZ protein localizes at mid-cell and recruits other proteins, forming a divisome. In Escherichia coli, the first molecular assembly of the divisome, the proto-ring, is formed by the association of FtsZ polymers to the cytoplasmic membrane through the membrane-tethering FtsA and ZipA proteins. The MinCDE system plays a major role in the site selection of the division ring because these proteins oscillate from pole to pole in such a way that the concentration of the FtsZ-ring inhibitor, MinC, is minimal at the cell center, thus favoring FtsZ assembly in this region. We show that MinCDE drives the formation of waves of FtsZ polymers associated to bilayers by ZipA, which propagate as antiphase patterns with respect to those of Min as revealed by confocal fluorescence microscopy. The emergence of these FtsZ waves results from the displacement of FtsZ polymers from the vicinity of the membrane by MinCD, which efficiently competes with ZipA for the C-terminal region of FtsZ, a central hub for multiple interactions that are essential for division. The coupling between FtsZ polymers and Min is enhanced at higher surface densities of ZipA or in the presence of crowding agents that favor the accumulation of FtsZ polymers near the membrane. The association of FtsZ polymers to the membrane modifies the response of FtsZ to Min, and comigrating Min-FtsZ waves are observed when FtsZ is free in solution and not attached to the membrane by ZipA. Taken together, our findings show that the dynamic Min patterns modulate the spatial distribution of FtsZ polymers in controlled minimal membranes. We propose that ZipA plays an important role in mid-cell recruitment of FtsZ orchestrated by MinCDE.
细菌细胞分裂由FtsZ环驱动,其中FtsZ蛋白定位于细胞中部并招募其他蛋白,形成分裂体。在大肠杆菌中,分裂体的首个分子组装体——原环,是由FtsZ聚合物通过膜锚定蛋白FtsA和ZipA与细胞质膜结合形成的。MinCDE系统在分裂环的位点选择中起主要作用,因为这些蛋白在两极之间振荡,使得FtsZ环抑制剂MinC在细胞中心的浓度最低,从而有利于FtsZ在该区域组装。我们发现,MinCDE驱动ZipA介导的与双层膜相关的FtsZ聚合物波的形成,共聚焦荧光显微镜显示,这些波以与Min波相反的相位模式传播。这些FtsZ波的出现是由于MinCD将FtsZ聚合物从膜附近驱离,MinCD与ZipA有效竞争FtsZ的C末端区域,该区域是分裂所必需的多种相互作用的中心枢纽。在ZipA表面密度较高或存在有利于FtsZ聚合物在膜附近积累的拥挤剂时,FtsZ聚合物与Min之间的耦合增强。FtsZ聚合物与膜的结合改变了FtsZ对Min的反应,当FtsZ游离于溶液中且未通过ZipA附着于膜时,会观察到Min与FtsZ共迁移的波。综上所述,我们的研究结果表明,动态的Min模式在可控的最小膜中调节FtsZ聚合物的空间分布。我们提出,ZipA在由MinCDE精心安排的FtsZ细胞中部募集过程中起重要作用。