Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland, Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, and Frankfurt Institute of Advanced Studies, 60438 Frankfurt am Main, Germany and Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan.
Nucleic Acids Res. 2013 Oct;41(18):e172. doi: 10.1093/nar/gkt665. Epub 2013 Aug 5.
The three-dimensional structure determination of RNAs by NMR spectroscopy relies on chemical shift assignment, which still constitutes a bottleneck. In order to develop more efficient assignment strategies, we analysed relationships between sequence and (1)H and (13)C chemical shifts. Statistics of resonances from regularly Watson-Crick base-paired RNA revealed highly characteristic chemical shift clusters. We developed two approaches using these statistics for chemical shift assignment of double-stranded RNA (dsRNA): a manual approach that yields starting points for resonance assignment and simplifies decision trees and an automated approach based on the recently introduced automated resonance assignment algorithm FLYA. Both strategies require only unlabeled RNAs and three 2D spectra for assigning the H2/C2, H5/C5, H6/C6, H8/C8 and H1'/C1' chemical shifts. The manual approach proved to be efficient and robust when applied to the experimental data of RNAs with a size between 20 nt and 42 nt. The more advanced automated assignment approach was successfully applied to four stem-loop RNAs and a 42 nt siRNA, assigning 92-100% of the resonances from dsRNA regions correctly. This is the first automated approach for chemical shift assignment of non-exchangeable protons of RNA and their corresponding (13)C resonances, which provides an important step toward automated structure determination of RNAs.
通过 NMR 光谱学确定 RNA 的三维结构依赖于化学位移赋值,这仍然是一个瓶颈。为了开发更有效的赋值策略,我们分析了序列与 (1)H 和 (13)C 化学位移之间的关系。来自规则 Watson-Crick 碱基配对 RNA 的共振的统计数据显示出高度特征性的化学位移簇。我们开发了两种使用这些统计数据进行双链 RNA(dsRNA)化学位移赋值的方法:一种手动方法,为共振赋值提供起点,并简化决策树,以及一种基于最近引入的自动共振赋值算法 FLYA 的自动方法。这两种策略都只需要未标记的 RNA 和三个 2D 光谱来分配 H2/C2、H5/C5、H6/C6、H8/C8 和 H1'/C1' 化学位移。当应用于大小在 20 个核苷酸到 42 个核苷酸之间的 RNA 的实验数据时,手动方法被证明是高效和稳健的。更先进的自动赋值方法成功地应用于四个茎环 RNA 和一个 42 个核苷酸的 siRNA,正确分配了 dsRNA 区域 92-100%的共振。这是第一个用于 RNA 非交换质子及其相应 (13)C 共振的化学位移赋值的自动方法,为 RNA 的自动结构确定提供了重要的一步。