Suppr超能文献

有机固体中化学位移的贝叶斯概率分配

Bayesian probabilistic assignment of chemical shifts in organic solids.

作者信息

Cordova Manuel, Balodis Martins, Simões de Almeida Bruno, Ceriotti Michele, Emsley Lyndon

机构信息

Laboratory of Magnetic Resonance, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.

National Centre for Computational Design and Discovery of Novel Materials MARVEL, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.

出版信息

Sci Adv. 2021 Nov 26;7(48):eabk2341. doi: 10.1126/sciadv.abk2341.

Abstract

A prerequisite for NMR studies of organic materials is assigning each experimental chemical shift to a set of geometrically equivalent nuclei. Obtaining the assignment experimentally can be challenging and typically requires time-consuming multidimensional correlation experiments. An alternative solution for determining the assignment involves statistical analysis of experimental chemical shift databases, but no such database exists for molecular solids. Here, by combining the Cambridge Structural Database with a machine learning model of chemical shifts, we construct a statistical basis for probabilistic chemical shift assignment of organic crystals by calculating shifts for more than 200,000 compounds, enabling the probabilistic assignment of organic crystals directly from their two-dimensional chemical structure. The approach is demonstrated with the C and H assignment of 11 molecular solids with experimental shifts and benchmarked on 100 crystals using predicted shifts. The correct assignment was found among the two most probable assignments in more than 80% of cases.

摘要

对有机材料进行核磁共振研究的一个前提条件是将每个实验化学位移指定给一组几何等效的原子核。通过实验获得这种指定可能具有挑战性,并且通常需要耗时的多维相关实验。确定这种指定的另一种解决方案涉及对实验化学位移数据库进行统计分析,但对于分子固体不存在这样的数据库。在这里,通过将剑桥结构数据库与化学位移的机器学习模型相结合,我们通过计算200,000多种化合物的化学位移,构建了有机晶体概率化学位移指定的统计基础,从而能够直接从其二维化学结构对有机晶体进行概率指定。该方法在11种具有实验化学位移的分子固体的碳和氢指定中得到了验证,并使用预测化学位移在100种晶体上进行了基准测试。在超过80%的情况下,在两个最可能的指定中找到了正确的指定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6efa/8626066/597ac605c979/sciadv.abk2341-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验