Suppr超能文献

应用固有时间尺度分解(ITD)对 EEG 信号进行自动癫痫发作预测。

Application of intrinsic time-scale decomposition (ITD) to EEG signals for automated seizure prediction.

机构信息

Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore.

出版信息

Int J Neural Syst. 2013 Oct;23(5):1350023. doi: 10.1142/S0129065713500238. Epub 2013 Jul 21.

Abstract

Intrinsic time-scale decomposition (ITD) is a new nonlinear method of time-frequency representation which can decipher the minute changes in the nonlinear EEG signals. In this work, we have automatically classified normal, interictal and ictal EEG signals using the features derived from the ITD representation. The energy, fractal dimension and sample entropy features computed on ITD representation coupled with decision tree classifier has yielded an average classification accuracy of 95.67%, sensitivity and specificity of 99% and 99.5%, respectively using 10-fold cross validation scheme. With application of the nonlinear ITD representation, along with conceptual advancement and improvement of the accuracy, the developed system is clinically ready for mass screening in resource constrained and emerging economy scenarios.

摘要

固有时间尺度分解(ITD)是一种新的非线性时频表示方法,可解析非线性 EEG 信号中的细微变化。在这项工作中,我们使用从 ITD 表示中提取的特征自动分类正常、发作间期和发作期 EEG 信号。使用 10 折交叉验证方案,在 ITD 表示上计算的能量、分形维数和样本熵特征与决策树分类器相结合,平均分类准确率为 95.67%,灵敏度和特异性分别为 99%和 99.5%。通过应用非线性 ITD 表示,结合概念上的进步和准确性的提高,所开发的系统已准备好用于资源有限和新兴经济体环境中的大规模筛查。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验