National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA.
Nature. 2013 Aug 29;500(7464):580-4. doi: 10.1038/nature12390. Epub 2013 Aug 7.
Behavioural responses to temperature are critical for survival, and animals from insects to humans show strong preferences for specific temperatures. Preferred temperature selection promotes avoidance of adverse thermal environments in the short term and maintenance of optimal body temperatures over the long term, but its molecular and cellular basis is largely unknown. Recent studies have generated conflicting views of thermal preference in Drosophila, attributing importance to either internal or peripheral warmth sensors. Here we reconcile these views by showing that thermal preference is not a singular response, but involves multiple systems relevant in different contexts. We found previously that the transient receptor potential channel TRPA1 acts internally to control the slowly developing preference response of flies exposed to a shallow thermal gradient. We now find that the rapid response of flies exposed to a steep warmth gradient does not require TRPA1; rather, the gustatory receptor GR28B(D) drives this behaviour through peripheral thermosensors. Gustatory receptors are a large gene family, widely studied in insect gustation and olfaction, and are implicated in host-seeking by insect disease vectors, but have not previously been implicated in thermosensation. At the molecular level, GR28B(D) misexpression confers thermosensitivity upon diverse cell types, suggesting that it is a warmth sensor. These data reveal a new type of thermosensory molecule and uncover a functional distinction between peripheral and internal warmth sensors in this tiny ectotherm reminiscent of thermoregulatory systems in larger, endothermic animals. The use of multiple, distinct molecules to respond to a given temperature, as observed here, may facilitate independent tuning of an animal's distinct thermosensory responses.
动物对温度的行为反应对生存至关重要,从昆虫到人类等动物都表现出对特定温度的强烈偏好。偏好温度的选择促进了动物在短期内避免不利的热环境,并在长期内维持最佳体温,但这一现象的分子和细胞基础在很大程度上仍是未知的。最近的研究对果蝇的热偏好产生了相互矛盾的观点,认为内部或外围的热感受器很重要。在这里,我们通过表明热偏好不是单一的反应,而是涉及到多个在不同环境中相关的系统,调和了这些观点。我们之前发现瞬时受体电位通道 TRPA1 在内部起作用,控制着暴露在浅热梯度中的果蝇对温度缓慢发展的偏好反应。我们现在发现,暴露在陡峭的温暖梯度中的果蝇的快速反应不需要 TRPA1;相反,味觉受体 GR28B(D) 通过外围热感受器驱动这种行为。味觉受体是一个广泛研究昆虫味觉和嗅觉的大型基因家族,与昆虫病媒寻找宿主有关,但以前与热感觉无关。在分子水平上,GR28B(D) 的异常表达赋予了不同细胞类型对温度的敏感性,这表明它是一种热感受器。这些数据揭示了一种新型的热敏分子,并揭示了在这个微小的外温动物中,外围和内部热感受器之间存在功能区别,这类似于更大的恒温动物的体温调节系统。正如这里所观察到的,使用多种不同的分子来对给定的温度做出反应,可能有助于独立调整动物不同的热敏反应。