Max-Planck Institute for Medical Research, D-69120 Heidelberg, Germany.
Nature. 2013 Aug 8;500(7461):168-74. doi: 10.1038/nature12346.
Comprehensive high-resolution structural maps are central to functional exploration and understanding in biology. For the nervous system, in which high resolution and large spatial extent are both needed, such maps are scarce as they challenge data acquisition and analysis capabilities. Here we present for the mouse inner plexiform layer--the main computational neuropil region in the mammalian retina--the dense reconstruction of 950 neurons and their mutual contacts. This was achieved by applying a combination of crowd-sourced manual annotation and machine-learning-based volume segmentation to serial block-face electron microscopy data. We characterize a new type of retinal bipolar interneuron and show that we can subdivide a known type based on connectivity. Circuit motifs that emerge from our data indicate a functional mechanism for a known cellular response in a ganglion cell that detects localized motion, and predict that another ganglion cell is motion sensitive.
全面的高分辨率结构图谱对于生物学中的功能探索和理解至关重要。对于需要高分辨率和大空间范围的神经系统来说,这样的图谱非常稀缺,因为它们挑战了数据获取和分析能力。在这里,我们为小鼠的内丛状层——哺乳动物视网膜中主要的计算神经突区域——提供了 950 个神经元及其相互接触的密集重建。这是通过将众包手动注释和基于机器学习的体分割相结合应用于连续块面电子显微镜数据来实现的。我们描述了一种新型的视网膜双极中间神经元,并表明我们可以根据连接性对已知类型进行细分。我们的数据中出现的电路模式表明了一种已知的细胞反应在检测局部运动的神经节细胞中的功能机制,并预测另一个神经节细胞对运动敏感。