Department of Chemistry and Nano Science, Global Top 5 Program, Division of Molecular and Life Sciences, College of Natural Sciences, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, Korea.
Chem Soc Rev. 2013 Nov 7;42(21):8467-93. doi: 10.1039/c3cs60043b. Epub 2013 Aug 8.
Metal oxide semiconductors hold great promise for applications in energy conversion and storage, environmental remediation, optoelectronics, memory, light emission and other areas, but critical factors such as the high rate of charge-carrier recombination and limited light absorption have restricted more practical and viable applications. The remarkable ability of plasmonic noble metals to concentrate and scatter visible light has found a versatile potential in harvesting and converting solar energy. Plasmonic nanostructures of noble metals in combination with semiconductors offer a promising future for the next generation of energy needs. The overlap of the spectral range of the incident photon with absorbance wavelength of the semiconductor and the surface plasmon bands of the plasmonic metal provides a useful tool to predict the enhancement in optical and electrical properties of hybrid semiconductor-noble metal nanostructures. Here we make an attempt to comprehensively review the role of plasmonic noble metals in the enhanced functions for photocatalytic activity, photoenergy conversion in DSSCs, enhanced light emission and photochromatism. We mainly focus on the improvement of performance in TiO2 or ZnO in combination with noble metals on representative photophysical applications. The mechanism behind their interaction with light is discussed in detail in each section.
金属氧化物半导体在能源转换和存储、环境修复、光电、存储器、发光和其他领域具有广阔的应用前景,但电荷载流子复合率高和光吸收有限等关键因素限制了更实际和可行的应用。贵金属的等离子体非凡的聚光和散射可见光的能力在太阳能的收集和转化方面具有广泛的应用潜力。贵金属等离子体纳米结构与半导体的结合为下一代能源需求提供了有希望的未来。入射光子的光谱范围与半导体的吸收波长和等离子体金属的表面等离子体带的重叠为预测混合半导体-贵金属纳米结构的光学和电学性能增强提供了有用的工具。在这里,我们试图全面回顾等离子体贵金属在增强光催化活性、DSSC 中的光电能转换、增强发光和光致变色功能方面的作用。我们主要关注 TiO2 或 ZnO 与贵金属结合在代表性光物理应用中的性能提高。在每个部分中都详细讨论了它们与光相互作用的机制。