Suppr超能文献

果蝇觅食幼虫中高氧引发的厌恶行为是由对过氧化氢的感官检测介导的。

Hyperoxia-triggered aversion behavior in Drosophila foraging larvae is mediated by sensory detection of hydrogen peroxide.

作者信息

Kim Myung Jun, Ainsley Joshua A, Carder Justin W, Johnson Wayne A

机构信息

Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa , USA.

出版信息

J Neurogenet. 2013 Dec;27(4):151-62. doi: 10.3109/01677063.2013.804920. Epub 2013 Aug 8.

Abstract

Reactive oxygen species (ROS) in excess have been implicated in numerous chronic illnesses, including asthma, diabetes, aging, cardiovascular disease, and neurodegenerative illness. However, at lower concentrations, ROS can also serve essential routine functions as part of cellular signal transduction pathways. As products of atmospheric oxygen, ROS-mediated signals can function to coordinate external environmental conditions with growth and development. A central challenge has been a mechanistic distinction between the toxic effects of oxidative stress and endogenous ROS functions occurring at much lower concentrations. Drosophila larval aerotactic behavioral assays revealed strong developmentally regulated aversion to mild hyperoxia mediated by H2O2-dependent activation of class IV multidendritic (mdIV) sensory neurons expressing the Degenerin/epithelial Na(+) channel subunit, Pickpocket1 (PPK1). Electrophysiological recordings in foraging-stage larvae (78-84 h after egg laying [AEL]) demonstrated PPK1-dependent activation of mdIV neurons by nanomolar levels of H2O2 well below levels normally associated with oxidative stress. Acute sensitivity was reduced > 100-fold during the larval developmental transition to wandering stage (> 96 h AEL), corresponding to a loss of hyperoxia aversion behavior during the same period. Degradation of endogenous H2O2 by transgenic overexpression of catalase in larval epidermis caused a suppression of hyperoxia aversion behavior. Conversely, disruption of endogenous catalase activity using a UAS-CatRNAi transposon resulted in an enhanced hyperoxia-aversive response. These results demonstrate an essential role for low-level endogenous H2O2 as an environment-derived signal coordinating developmental behavioral transitions.

摘要

过量的活性氧(ROS)与多种慢性疾病有关,包括哮喘、糖尿病、衰老、心血管疾病和神经退行性疾病。然而,在较低浓度下,ROS作为细胞信号转导途径的一部分,也可以发挥重要的常规功能。作为大气氧的产物,ROS介导的信号可以起到协调外部环境条件与生长发育的作用。一个核心挑战是区分氧化应激的毒性作用和在低得多的浓度下发生的内源性ROS功能的机制差异。果蝇幼虫的空气趋性行为分析表明,表达退化蛋白/上皮钠(+)通道亚基Pickpocket1(PPK1)的IV类多树突(mdIV)感觉神经元通过H2O2依赖性激活,对轻度高氧产生强烈的发育调控厌恶。对觅食期幼虫(产卵后78-84小时[AEL])的电生理记录表明,纳摩尔水平的H2O₂在远低于通常与氧化应激相关的水平下,通过PPK1依赖性激活mdIV神经元。在幼虫发育过渡到漫游期(>96小时AEL)期间,急性敏感性降低了100倍以上,这与同期高氧厌恶行为的丧失相对应。通过在幼虫表皮中转基因过表达过氧化氢酶来降解内源性H2O2,导致高氧厌恶行为受到抑制。相反,使用UAS-CatRNAi转座子破坏内源性过氧化氢酶活性,导致高氧厌恶反应增强。这些结果表明,低水平内源性H2O2作为一种协调发育行为转变的环境衍生信号具有重要作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验