Suppr超能文献

评估遗传和非遗传因素对抑郁症状预测的交互作用:使用机器学习算法对威斯康星纵向研究的分析。

Assessment of genetic and nongenetic interactions for the prediction of depressive symptomatology: an analysis of the Wisconsin Longitudinal Study using machine learning algorithms.

机构信息

Nicholas S. Roetker, James A. Yonker, Vicky Chang, Carol L. Roan, Pamela Herd, Taissa S. Hauser, and Robert M. Hauser are with the Department of Sociology, University of Wisconsin-Madison. Pamela Herd is also with La Follete School of Public Affairs, University of Wisconsin-Madison. C. David Page is with the Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison. Craig S. Atwood is with the Geriatric Research, Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, and the Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health.

出版信息

Am J Public Health. 2013 Oct;103 Suppl 1(Suppl 1):S136-44. doi: 10.2105/AJPH.2012.301141. Epub 2013 Aug 8.

Abstract

OBJECTIVES

We examined depression within a multidimensional framework consisting of genetic, environmental, and sociobehavioral factors and, using machine learning algorithms, explored interactions among these factors that might better explain the etiology of depressive symptoms.

METHODS

We measured current depressive symptoms using the Center for Epidemiologic Studies Depression Scale (n = 6378 participants in the Wisconsin Longitudinal Study). Genetic factors were 78 single nucleotide polymorphisms (SNPs); environmental factors-13 stressful life events (SLEs), plus a composite proportion of SLEs index; and sociobehavioral factors-18 personality, intelligence, and other health or behavioral measures. We performed traditional SNP associations via logistic regression likelihood ratio testing and explored interactions with support vector machines and Bayesian networks.

RESULTS

After correction for multiple testing, we found no significant single genotypic associations with depressive symptoms. Machine learning algorithms showed no evidence of interactions. Naïve Bayes produced the best models in both subsets and included only environmental and sociobehavioral factors.

CONCLUSIONS

We found no single or interactive associations with genetic factors and depressive symptoms. Various environmental and sociobehavioral factors were more predictive of depressive symptoms, yet their impacts were independent of one another. A genome-wide analysis of genetic alterations using machine learning methodologies will provide a framework for identifying genetic-environmental-sociobehavioral interactions in depressive symptoms.

摘要

目的

我们在一个包含遗传、环境和社会行为因素的多维框架内检查了抑郁,并且使用机器学习算法,探索了这些因素之间的相互作用,这些相互作用可能可以更好地解释抑郁症状的病因。

方法

我们使用流行病学研究抑郁量表(威斯康星纵向研究中的 6378 名参与者)来衡量当前的抑郁症状。遗传因素是 78 个单核苷酸多态性(SNP);环境因素-13 个生活应激事件(SLE),加上 SLE 指数的综合比例;社会行为因素-18 个人格、智力和其他健康或行为措施。我们通过逻辑回归似然比检验进行了传统的 SNP 关联分析,并通过支持向量机和贝叶斯网络探索了相互作用。

结果

在进行多次测试校正后,我们没有发现与抑郁症状有显著单基因型关联。机器学习算法没有显示出相互作用的证据。朴素贝叶斯在两个子集都产生了最好的模型,只包括环境和社会行为因素。

结论

我们没有发现与遗传因素和抑郁症状有关的单一或相互作用。各种环境和社会行为因素对抑郁症状的预测性更强,但它们的影响是相互独立的。使用机器学习方法对遗传改变进行全基因组分析将为识别遗传-环境-社会行为相互作用在抑郁症状中的作用提供一个框架。

相似文献

引用本文的文献

7
From genomes to societies: a holistic view of determinants of human health.从基因组到社会:人类健康决定因素的整体观。
Curr Opin Biotechnol. 2014 Aug;28:134-42. doi: 10.1016/j.copbio.2014.03.001. Epub 2014 Mar 28.

本文引用的文献

4
Association of variants in innate immune genes with asthma and eczema.先天免疫基因变异与哮喘和湿疹的关联。
Pediatr Allergy Immunol. 2012 Jun;23(4):315-23. doi: 10.1111/j.1399-3038.2011.01243.x. Epub 2011 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验