Suppr超能文献

一种机器学习方法,用于识别美国国立卫生研究院资助的应用预防研究。

A Machine Learning Approach to Identify NIH-Funded Applied Prevention Research.

机构信息

Office of Disease Prevention, NIH, Rockville, Maryland.

Office of Disease Prevention, NIH, Rockville, Maryland.

出版信息

Am J Prev Med. 2018 Dec;55(6):926-931. doi: 10.1016/j.amepre.2018.07.024. Epub 2018 Oct 25.

Abstract

INTRODUCTION

To fulfill its mission, the NIH Office of Disease Prevention systematically monitors NIH investments in applied prevention research. Specifically, the Office focuses on research in humans involving primary and secondary prevention, and prevention-related methods. Currently, the NIH uses the Research, Condition, and Disease Categorization system to report agency funding in prevention research. However, this system defines prevention research broadly to include primary and secondary prevention, studies on prevention methods, and basic and preclinical studies for prevention. A new methodology was needed to quantify NIH funding in applied prevention research.

METHODS

A novel machine learning approach was developed and evaluated for its ability to characterize NIH-funded applied prevention research during fiscal years 2012-2015. The sensitivity, specificity, positive predictive value, accuracy, and F1 score of the machine learning method; the Research, Condition, and Disease Categorization system; and a combined approach were estimated. Analyses were completed during June-August 2017.

RESULTS

Because the machine learning method was trained to recognize applied prevention research, it more accurately identified applied prevention grants (F1 = 72.7%) than the Research, Condition, and Disease Categorization system (F1 = 54.4%) and a combined approach (F1 = 63.5%) with p<0.001.

CONCLUSIONS

This analysis demonstrated the use of machine learning as an efficient method to classify NIH-funded research grants in disease prevention.

摘要

简介

为了履行其使命,NIH 疾病预防办公室系统地监测 NIH 在应用预防研究方面的投资。具体来说,该办公室专注于涉及初级和二级预防以及预防相关方法的人类研究。目前,NIH 使用研究、条件和疾病分类系统报告机构在预防研究方面的资金。然而,该系统将预防研究广泛定义为包括初级和二级预防、预防方法研究以及预防的基础和临床前研究。需要一种新的方法来量化 NIH 在应用预防研究方面的资金。

方法

开发了一种新的机器学习方法,并评估其在 2012-2015 财年描述 NIH 资助的应用预防研究的能力。估计了机器学习方法、研究、条件和疾病分类系统以及综合方法的灵敏度、特异性、阳性预测值、准确性和 F1 评分。分析于 2017 年 6 月至 8 月进行。

结果

由于机器学习方法是为识别应用预防研究而训练的,因此它比研究、条件和疾病分类系统(F1=54.4%)和综合方法(F1=63.5%)更准确地识别应用预防研究(F1=72.7%),p<0.001。

结论

这项分析表明,机器学习可作为一种有效的方法来对 NIH 资助的疾病预防研究拨款进行分类。

相似文献

2
NIH Primary and Secondary Prevention Research in Humans During 2012-2017.NIH 人类 2012-2017 年一级和二级预防研究。
Am J Prev Med. 2018 Dec;55(6):915-925. doi: 10.1016/j.amepre.2018.08.006. Epub 2018 Oct 25.
3
Substance use prevention research funded by the NIH.美国国立卫生研究院资助的物质使用预防研究。
Drug Alcohol Depend. 2020 Jan 1;206:107724. doi: 10.1016/j.drugalcdep.2019.107724. Epub 2019 Nov 7.

引用本文的文献

7
NIH Primary and Secondary Prevention Research in Humans During 2012-2017.NIH 人类 2012-2017 年一级和二级预防研究。
Am J Prev Med. 2018 Dec;55(6):915-925. doi: 10.1016/j.amepre.2018.08.006. Epub 2018 Oct 25.

本文引用的文献

4
Computational approaches for predicting biomedical research collaborations.预测生物医学研究合作的计算方法。
PLoS One. 2014 Nov 6;9(11):e111795. doi: 10.1371/journal.pone.0111795. eCollection 2014.
9
Building on "The concept of prevention: a good idea gone astray?".基于《预防的概念:一个误入歧途的好主意?》一文。
J Epidemiol Community Health. 2011 Feb;65(2):116-8. doi: 10.1136/jech.2008.082818. Epub 2009 Nov 24.
10
The concept of prevention: a good idea gone astray?预防的概念:一个误入歧途的好想法?
J Epidemiol Community Health. 2008 Jul;62(7):580-3. doi: 10.1136/jech.2007.071027.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验