The Leon H Charney Division of Cardiology, New York University School of Medicine, 522 First Avenue, Smilow 805, New York, NY 10016, USA.
Cardiovasc Res. 2013 Nov 1;100(2):231-40. doi: 10.1093/cvr/cvt191. Epub 2013 Aug 8.
Cell function requires formation of molecular clusters localized to discrete subdomains. The composition of these interactomes, and their spatial organization, cannot be discerned by conventional microscopy given the resolution constraints imposed by the diffraction limit of light (∼200-300 nm). Our aims were (i) Implement single-molecule imaging and analysis tools to resolve the nano-scale architecture of cardiac myocytes. (ii) Using these tools, to map two molecules classically defined as components 'of the desmosome' and 'of the gap junction', and defined their spatial organization.
We built a set-up on a conventional inverted microscope using commercially available optics. Laser illumination, reducing, and oxygen scavenging conditions were used to manipulate the blinking behaviour of individual fluorescent reporters. Movies of blinking fluorophores were reconstructed to generate subdiffraction images at ∼20 nm resolution. With this method, we characterized clusters of connexin43 (Cx43) and of 'the desmosomal protein' plakophilin-2 (PKP2). In about half of Cx43 clusters, we observed overlay of Cx43 and PKP2 at the Cx43 plaque edge. SiRNA-mediated loss of Ankyrin-G expression yielded larger Cx43 clusters, of less regular shape, and larger Cx43-PKP2 subdomains. The Cx43-PKP2 subdomain was validated by a proximity ligation assay (PLA) and by Monte-Carlo simulations indicating an attraction between PKP2 and Cx43.
(i) Super-resolution fluorescence microscopy, complemented with Monte-Carlo simulations and PLAs, allows the study of the nanoscale organization of an interactome in cardiomyocytes. (ii) PKP2 and Cx43 share a common hub that permits direct physical interaction. Its relevance to excitability, electrical coupling, and arrhythmogenic right ventricular cardiomyopathy, is discussed.
细胞功能需要形成定位于离散亚域的分子簇。由于光的衍射极限(约 200-300nm)所施加的分辨率限制,这些相互作用体的组成及其空间组织不能通过常规显微镜来识别。我们的目标是:(i)实施单分子成像和分析工具,以解析心肌细胞的纳米级结构。(ii)使用这些工具,绘制两个分子的图谱,这两个分子经典上被定义为“桥粒的组成部分”和“间隙连接的组成部分”,并定义它们的空间组织。
我们使用商业上可用的光学元件在常规倒置显微镜上构建了一个装置。激光照明、减少和氧气清除条件用于操纵单个荧光报告器的闪烁行为。闪烁荧光团的电影被重建以生成分辨率约为 20nm 的亚衍射图像。使用这种方法,我们对连接蛋白 43(Cx43)和“桥粒蛋白”斑珠蛋白-2(PKP2)的簇进行了表征。在大约一半的 Cx43 簇中,我们观察到 Cx43 和 PKP2 在 Cx43 斑块边缘的重叠。Ankyrin-G 表达的 siRNA 介导的缺失导致 Cx43 簇更大,形状不规则,Cx43-PKP2 亚域更大。通过邻近连接分析(PLA)和 Monte-Carlo 模拟验证了 Cx43-PKP2 亚域,表明 PKP2 和 Cx43 之间存在吸引力。
(i)超分辨率荧光显微镜,辅以 Monte-Carlo 模拟和 PLA,允许研究心肌细胞中相互作用体的纳米级组织。(ii)PKP2 和 Cx43 共享一个共同的中心,允许直接物理相互作用。讨论了其与兴奋性、电耦合和心律失常性右心室心肌病的相关性。