Institut National de Recherche en Informatique et Automatique, Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France.
IEEE Trans Vis Comput Graph. 2013 Oct;19(10):1619-32. doi: 10.1109/TVCG.2013.79.
The Monte Carlo method has proved to be very powerful to cope with global illumination problems but it remains costly in terms of sampling operations. In various applications, previous work has shown that Bayesian Monte Carlo can significantly outperform importance sampling Monte Carlo thanks to a more effective use of the prior knowledge and of the information brought by the samples set. These good results have been confirmed in the context of global illumination but strictly limited to the perfect diffuse case. Our main goal in this paper is to propose a more general Bayesian Monte Carlo solution that allows dealing with nondiffuse BRDFs thanks to a spherical Gaussian-based framework. We also propose a fast hyperparameters determination method that avoids learning the hyperparameters for each BRDF. These contributions represent two major steps toward generalizing Bayesian Monte Carlo for global illumination rendering. We show that we achieve substantial quality improvements over importance sampling at comparable computational cost.
蒙特卡罗方法已被证明在处理全局光照问题方面非常强大,但在采样操作方面仍然成本高昂。在各种应用中,先前的工作表明,贝叶斯蒙特卡罗由于更有效地利用了先验知识和样本集带来的信息,可以显著优于重要性采样蒙特卡罗。这些良好的结果已经在全局光照的背景下得到了证实,但严格限于完全漫反射的情况。我们在本文中的主要目标是提出一种更通用的贝叶斯蒙特卡罗解决方案,该解决方案允许通过基于球形高斯的框架处理非漫反射 BRDF。我们还提出了一种快速超参数确定方法,避免了为每个 BRDF 学习超参数。这些贡献代表了将贝叶斯蒙特卡罗方法推广到全局光照渲染的两个主要步骤。我们表明,在可比的计算成本下,我们可以实现比重要性采样更高的质量改进。