Suppr超能文献

从 HIV-1 人类蛋白质相互作用网络中挖掘准二部子图:一种多目标二聚类方法。

Mining quasi-bicliques from HIV-1-human protein interaction network: a multiobjective biclustering approach.

机构信息

Department of Computer Science and Engineering, Jadavpur University, Kolkata 700032, West Bengal, India.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2013 Mar-Apr;10(2):423-35. doi: 10.1109/TCBB.2012.139.

Abstract

In this work, we model the problem of mining quasi-bicliques from weighted viral-host protein-protein interaction network as a biclustering problem for identifying strong interaction modules. In this regard, a multiobjective genetic algorithm-based biclustering technique is proposed that simultaneously optimizes three objective functions to obtain dense biclusters having high mean interaction strengths. The performance of the proposed technique has been compared with that of other existing biclustering methods on an artificial data. Subsequently, the proposed biclustering method is applied on the records of biologically validated and predicted interactions between a set of HIV-1 proteins and a set of human proteins to identify strong interaction modules. For this, the entire interaction information is realized as a bipartite graph. We have further investigated the biological significance of the obtained biclusters. The human proteins involved in the strong interaction module have been found to share common biological properties and they are identified as the gateways of viral infection leading to various diseases. These human proteins can be potential drug targets for developing anti-HIV drugs.

摘要

在这项工作中,我们将挖掘加权病毒-宿主蛋白质相互作用网络中的准双聚类问题建模为识别强相互作用模块的双聚类问题。为此,提出了一种基于多目标遗传算法的双聚类技术,该技术同时优化三个目标函数,以获得具有高平均相互作用强度的密集双聚类。在人工数据上,将所提出的技术的性能与其他现有双聚类方法进行了比较。随后,将所提出的双聚类方法应用于一组 HIV-1 蛋白和一组人类蛋白之间经过生物学验证和预测的相互作用记录,以识别强相互作用模块。为此,将整个相互作用信息表示为二分图。我们进一步研究了所得到的双聚类的生物学意义。发现强相互作用模块中涉及的人类蛋白具有共同的生物学特性,它们被鉴定为导致各种疾病的病毒感染的门户。这些人类蛋白可以作为开发抗 HIV 药物的潜在药物靶点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验