Suppr超能文献

基于结构警示和体外筛选试验的化学肝毒性机制驱动建模。

Mechanism-driven modeling of chemical hepatotoxicity using structural alerts and an in vitro screening assay.

机构信息

The Rutgers Center for Computational and Integrative Biology, Camden, NJ 08102, USA.

Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.

出版信息

J Hazard Mater. 2022 Aug 15;436:129193. doi: 10.1016/j.jhazmat.2022.129193. Epub 2022 May 20.

Abstract

Traditional experimental approaches to evaluate hepatotoxicity are expensive and time-consuming. As an advanced framework of risk assessment, adverse outcome pathways (AOPs) describe the sequence of molecular and cellular events underlying chemical toxicities. We aimed to develop an AOP that can be used to predict hepatotoxicity by leveraging computational modeling and in vitro assays. We curated 869 compounds with known hepatotoxicity classifications as a modeling set and extracted assay data from PubChem. The antioxidant response element (ARE) assay, which quantifies transcriptional responses to oxidative stress, showed a high correlation to hepatotoxicity (PPV=0.82). Next, we developed quantitative structure-activity relationship (QSAR) models to predict ARE activation for compounds lacking testing results. Potential toxicity alerts were identified and used to construct a mechanistic hepatotoxicity model. For experimental validation, 16 compounds in the modeling set and 12 new compounds were selected and tested using an in-house ARE-luciferase assay in HepG2-C8 cells. The mechanistic model showed good hepatotoxicity predictivity (accuracy = 0.82) for these compounds. Potential false positive hepatotoxicity predictions by only using ARE results can be corrected by incorporating structural alerts and vice versa. This mechanistic model illustrates a potential toxicity pathway for hepatotoxicity, and this strategy can be expanded to develop predictive models for other complex toxicities.

摘要

传统的评估肝毒性的实验方法既昂贵又耗时。作为风险评估的高级框架,不良结局途径(AOP)描述了化学毒性的分子和细胞事件的序列。我们旨在开发一种可以通过计算建模和体外测定来预测肝毒性的 AOP。我们将 869 种具有已知肝毒性分类的化合物作为建模集进行了整理,并从 PubChem 中提取了测定数据。抗氧化反应元件(ARE)测定法可定量测定对氧化应激的转录反应,与肝毒性相关性很高(PPV=0.82)。接下来,我们开发了定量构效关系(QSAR)模型,以预测缺乏测试结果的化合物的 ARE 激活。确定了潜在毒性警报,并用于构建机制性肝毒性模型。为了进行实验验证,从建模集中选择了 16 种化合物和 12 种新化合物,并在 HepG2-C8 细胞中使用内部 ARE-荧光素酶测定法进行了测试。该机制模型对这些化合物具有良好的肝毒性预测能力(准确性=0.82)。仅使用 ARE 结果可能会导致假阳性肝毒性预测,通过结合结构警报可以纠正这一问题,反之亦然。该机制模型说明了肝毒性的潜在毒性途径,并且该策略可以扩展到开发其他复杂毒性的预测模型。

相似文献

1
Mechanism-driven modeling of chemical hepatotoxicity using structural alerts and an in vitro screening assay.
J Hazard Mater. 2022 Aug 15;436:129193. doi: 10.1016/j.jhazmat.2022.129193. Epub 2022 May 20.
2
Hybrid non-animal modeling: A mechanistic approach to predict chemical hepatotoxicity.
J Hazard Mater. 2024 Jun 5;471:134297. doi: 10.1016/j.jhazmat.2024.134297. Epub 2024 Apr 12.
5
Integrating Concentration-Dependent Toxicity Data and Toxicokinetics To Inform Hepatotoxicity Response Pathways.
Environ Sci Technol. 2023 Aug 22;57(33):12291-12301. doi: 10.1021/acs.est.3c02792. Epub 2023 Aug 11.
6
Predicting drug-induced hepatotoxicity using QSAR and toxicogenomics approaches.
Chem Res Toxicol. 2011 Aug 15;24(8):1251-62. doi: 10.1021/tx200148a. Epub 2011 Jul 21.
7
Derivation, characterisation and analysis of an adverse outcome pathway network for human hepatotoxicity.
Toxicology. 2021 Jul;459:152856. doi: 10.1016/j.tox.2021.152856. Epub 2021 Jul 10.
8
Data-Driven Quantitative Structure-Activity Relationship Modeling for Human Carcinogenicity by Chronic Oral Exposure.
Environ Sci Technol. 2023 Apr 25;57(16):6573-6588. doi: 10.1021/acs.est.3c00648. Epub 2023 Apr 11.
9
Adverse Outcome Pathways Mechanistically Describing Hepatotoxicity.
Methods Mol Biol. 2025;2834:249-273. doi: 10.1007/978-1-0716-4003-6_12.
10
[AI-based QSAR Modeling for Prediction of Active Compounds in MIE/AOP].
Yakugaku Zasshi. 2020;140(4):499-505. doi: 10.1248/yakushi.19-00190-4.

引用本文的文献

2
Nanoparticles from grape seed extract inhibit inflammatory cytokines and ameliorate CCl-induced hepatotoxicity.
BMC Complement Med Ther. 2025 Jul 19;25(1):276. doi: 10.1186/s12906-025-05005-7.
4
Predicting Chemical Immunotoxicity through Data-Driven QSAR Modeling of Aryl Hydrocarbon Receptor Agonism and Related Toxicity Mechanisms.
Environ Health (Wash). 2024 May 28;2(7):474-485. doi: 10.1021/envhealth.4c00026. eCollection 2024 Jul 19.
5
Hybrid non-animal modeling: A mechanistic approach to predict chemical hepatotoxicity.
J Hazard Mater. 2024 Jun 5;471:134297. doi: 10.1016/j.jhazmat.2024.134297. Epub 2024 Apr 12.
6
Roadmap to DILI research in Europe. A proposal from COST action ProEuroDILINet.
Pharmacol Res. 2024 Feb;200:107046. doi: 10.1016/j.phrs.2023.107046. Epub 2023 Dec 28.
7
Integrating Concentration-Dependent Toxicity Data and Toxicokinetics To Inform Hepatotoxicity Response Pathways.
Environ Sci Technol. 2023 Aug 22;57(33):12291-12301. doi: 10.1021/acs.est.3c02792. Epub 2023 Aug 11.
8
In silico modeling-based new alternative methods to predict drug and herb-induced liver injury: A review.
Food Chem Toxicol. 2023 Sep;179:113948. doi: 10.1016/j.fct.2023.113948. Epub 2023 Jul 17.
9
Data-Driven Quantitative Structure-Activity Relationship Modeling for Human Carcinogenicity by Chronic Oral Exposure.
Environ Sci Technol. 2023 Apr 25;57(16):6573-6588. doi: 10.1021/acs.est.3c00648. Epub 2023 Apr 11.
10
Integrating structure annotation and machine learning approaches to develop graphene toxicity models.
Carbon N Y. 2023 Feb;204:484-494. doi: 10.1016/j.carbon.2022.12.065. Epub 2022 Dec 26.

本文引用的文献

2
Construction of a Virtual Opioid Bioprofile: A Data-Driven QSAR Modeling Study to Identify New Analgesic Opioids.
ACS Sustain Chem Eng. 2021 Mar 15;9(10):3909-3919. doi: 10.1021/acssuschemeng.0c09139. Epub 2021 Mar 4.
3
Crizotinib and Sunitinib Induce Hepatotoxicity and Mitochondrial Apoptosis in L02 Cells via ROS and Nrf2 Signaling Pathway.
Front Pharmacol. 2021 Feb 1;12:620934. doi: 10.3389/fphar.2021.620934. eCollection 2021.
4
DeepDILI: Deep Learning-Powered Drug-Induced Liver Injury Prediction Using Model-Level Representation.
Chem Res Toxicol. 2021 Feb 15;34(2):550-565. doi: 10.1021/acs.chemrestox.0c00374. Epub 2020 Dec 23.
5
Predictive modeling of estrogen receptor agonism, antagonism, and binding activities using machine- and deep-learning approaches.
Lab Invest. 2021 Apr;101(4):490-502. doi: 10.1038/s41374-020-00477-2. Epub 2020 Aug 10.
6
An adverse outcome pathway for immune-mediated and allergic hepatitis: a case study with the NSAID diclofenac.
Arch Toxicol. 2020 Aug;94(8):2733-2748. doi: 10.1007/s00204-020-02767-6. Epub 2020 May 5.
7
The uricosuric benzbromarone disturbs the mitochondrial redox homeostasis and activates the NRF2 signaling pathway in HepG2 cells.
Free Radic Biol Med. 2020 May 20;152:216-226. doi: 10.1016/j.freeradbiomed.2020.03.009. Epub 2020 Mar 17.
9
In vitro prediction of organ toxicity: the challenges of scaling and secondary mechanisms of toxicity.
Arch Toxicol. 2020 Feb;94(2):353-356. doi: 10.1007/s00204-020-02669-7. Epub 2020 Feb 17.
10
Big Data and Artificial Intelligence Modeling for Drug Discovery.
Annu Rev Pharmacol Toxicol. 2020 Jan 6;60:573-589. doi: 10.1146/annurev-pharmtox-010919-023324. Epub 2019 Sep 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验