State Key Laboratory of Molecular and Cellular Biology, Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine.
Gene. 2013 Oct 25;529(2):199-207. doi: 10.1016/j.gene.2013.07.047. Epub 2013 Aug 9.
Cancer evolution is a stochastic process both at the genome and gene levels. Most of tumors contain multiple genetic subclones, evolving in either succession or in parallel, either in a linear or branching manner, with heterogeneous genome and gene alterations, extensively rewired signaling networks, and addicted to multiple oncogenes easily switching with each other during cancer progression and medical intervention. Hundreds of discovered cancer genes are classified according to whether they function in a dominant (oncogenes) or recessive (tumor suppressor genes) manner in a cancer cell. However, there are many cancer "gene-chameleons", which behave distinctly in opposite way in the different experimental settings showing antagonistic duality. In contrast to the widely accepted view that mutant NADP(+)-dependent isocitrate dehydrogenases 1/2 (IDH1/2) and associated metabolite 2-hydroxyglutarate (R)-enantiomer are intrinsically "the drivers" of tumourigenesis, mutant IDH1/2 inhibited, promoted or had no effect on cell proliferation, growth and tumorigenicity in diverse experiments. Similar behavior was evidenced for dozens of cancer genes. Gene function is dependent on genetic network, which is defined by the genome context. The overall changes in karyotype can result in alterations of the role and function of the same genes and pathways. The diverse cell lines and tumor samples have been used in experiments for proving gene tumor promoting/suppressive activity. They all display heterogeneous individual karyotypes and disturbed signaling networks. Consequently, the effect and function of gene under investigation can be opposite and versatile in cells with different genomes that may explain antagonistic duality of cancer genes and the cell type- or the cellular genetic/context-dependent response to the same protein. Antagonistic duality of cancer genes might contribute to failure of chemotherapy. Instructive examples of unexpected activity of cancer genes and "paradoxical" effects of different anticancer drugs depending on the cellular genetic context/signaling network are discussed.
癌症的进化是一个在基因组和基因水平上的随机过程。大多数肿瘤包含多个遗传亚克隆,它们以连续或平行的方式进化,或以线性或分支的方式进化,具有异质性的基因组和基因改变,广泛重排的信号网络,并依赖于多个癌基因,这些癌基因在癌症进展和医学干预过程中很容易相互转换。数百种已发现的癌症基因根据它们在癌细胞中是否以显性(癌基因)或隐性(肿瘤抑制基因)方式发挥作用进行分类。然而,有许多癌症“基因变色龙”,它们在不同的实验环境中表现出截然不同的相反行为,显示出拮抗双重性。与普遍接受的观点相反,突变的 NADP(+)-依赖性异柠檬酸脱氢酶 1/2 (IDH1/2) 和相关代谢物 2-羟基戊二酸 (R)-对映体本质上是肿瘤发生的“驱动因素”,在不同的实验中,突变 IDH1/2 对细胞增殖、生长和致瘤性的抑制、促进或没有影响。数十个癌症基因也表现出类似的行为。基因功能取决于基因网络,而基因网络是由基因组上下文定义的。总体染色体组变化可导致相同基因和途径的作用和功能发生改变。在实验中使用了不同的细胞系和肿瘤样本来证明基因的肿瘤促进/抑制活性。它们都显示出异质性的个体染色体组型和紊乱的信号网络。因此,在具有不同基因组的细胞中,被研究基因的作用和功能可能是相反的和多样化的,这可以解释癌症基因的拮抗双重性以及对同一蛋白质的细胞类型或细胞遗传/背景依赖性反应。癌症基因的拮抗双重性可能导致化疗失败。讨论了癌症基因的意外活性和不同抗癌药物的“矛盾”作用的有启发性的例子,这取决于细胞遗传背景/信号网络。