University of Geneva, Geneva School of Economics and Management, Geneva, 1205, Switzerland.
Auburn University, Department of Mathematics and Statistics, Auburn, AL, 36849, USA.
Sci Rep. 2022 Mar 25;12(1):5166. doi: 10.1038/s41598-022-08737-5.
Non-coding micro RNAs (miRNAs) dysregulation seems to play an important role in the pathways involved in breast cancer occurrence and progression. In different studies, opposite functions may be assigned to the same miRNA, either promoting the disease or protecting from it. Our research tackles the following issues: (i) why aren't there any concordant findings in many research studies regarding the role of miRNAs in the progression of breast cancer? (ii) could a miRNA have either an activating effect or an inhibiting one in cancer progression according to the other miRNAs with which it interacts? For this purpose, we analyse the AHUS dataset made available on the ArrayExpress platform by Haakensen et al. The breast tissue specimens were collected over 7 years between 2003 and 2009. miRNA-expression profiling was obtained for 55 invasive carcinomas and 70 normal breast tissue samples. Our statistical analysis is based on a recently developed model and feature selection technique which, instead of selecting a single model (i.e. a unique combination of miRNAs), delivers a set of models with equivalent predictive capabilities that allows to interpret and visualize the interaction of these features. As a result, we discover a set of 112 indistinguishable models (in a predictive sense) each with 4 or 5 miRNAs. Within this set, by comparing the model coefficients, we are able to identify three classes of miRNA: (i) oncogenic miRNAs; (ii) protective miRNAs; (iii) undefined miRNAs which can play both an oncogenic and a protective role according to the network with which they interact. These results shed new light on the biological action of miRNAs in breast cancer and may contribute to explain why, in some cases, different studies attribute opposite functions to the same miRNA.
非编码微小 RNA(miRNA)失调似乎在乳腺癌发生和发展所涉及的途径中发挥着重要作用。在不同的研究中,同一 miRNA 可能具有相反的功能,既能促进疾病的发生,也能起到保护作用。我们的研究解决了以下问题:(i)为什么在许多关于 miRNA 在乳腺癌进展中作用的研究中没有任何一致的发现?(ii)根据与 miRNA 相互作用的其他 miRNA,miRNA 对癌症进展可能具有激活作用或抑制作用吗?为此,我们分析了 Haakensen 等人在 ArrayExpress 平台上提供的 AHUS 数据集。这些乳腺组织标本是在 2003 年至 2009 年的 7 年间收集的。对 55 例浸润性乳腺癌和 70 例正常乳腺组织样本进行了 miRNA 表达谱分析。我们的统计分析基于一种新开发的模型和特征选择技术,该技术不是选择单一模型(即独特的 miRNA 组合),而是提供一组具有等效预测能力的模型,允许对这些特征的相互作用进行解释和可视化。结果,我们发现了一组 112 个不可区分的模型(在预测意义上),每个模型有 4 个或 5 个 miRNA。在这个集合中,通过比较模型系数,我们能够确定三类 miRNA:(i)致癌 miRNA;(ii)保护性 miRNA;(iii)未定义 miRNA,根据它们相互作用的网络,它们可以发挥致癌和保护作用。这些结果为 miRNA 在乳腺癌中的生物学作用提供了新的认识,并可能有助于解释为什么在某些情况下,同一 miRNA 在不同的研究中被赋予相反的功能。