Suppr超能文献

使用 Moonlight 研究驱动基因预测的机制指标的工作流程。

A workflow to study mechanistic indicators for driver gene prediction with Moonlight.

机构信息

Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, Lyngby, Denmark.

Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA.

出版信息

Brief Bioinform. 2023 Sep 20;24(5). doi: 10.1093/bib/bbad274.

Abstract

Prediction of driver genes (tumor suppressors and oncogenes) is an essential step in understanding cancer development and discovering potential novel treatments. We recently proposed Moonlight as a bioinformatics framework to predict driver genes and analyze them in a system-biology-oriented manner based on -omics integration. Moonlight uses gene expression as a primary data source and combines it with patterns related to cancer hallmarks and regulatory networks to identify oncogenic mediators. Once the oncogenic mediators are identified, it is important to include extra levels of evidence, called mechanistic indicators, to identify driver genes and to link the observed gene expression changes to the underlying alteration that promotes them. Such a mechanistic indicator could be for example a mutation in the regulatory regions for the candidate gene. Here, we developed new functionalities and released Moonlight2 to provide the user with a mutation-based mechanistic indicator as a second layer of evidence. These functionalities analyze mutations in a cancer cohort to classify them into driver and passenger mutations. Those oncogenic mediators with at least one driver mutation are retained as the final set of driver genes. We applied Moonlight2 to the basal-like breast cancer subtype, lung adenocarcinoma and thyroid carcinoma using data from The Cancer Genome Atlas. For example, in basal-like breast cancer, we found four oncogenes (COPZ2, SF3B4, KRTCAP2 and POLR2J) and nine tumor suppressor genes (KIR2DL4, KIF26B, ARL15, ARHGAP25, EMCN, GMFG, TPK1, NR5A2 and TEK) containing a driver mutation in their promoter region, possibly explaining their deregulation. Moonlight2R is available at https://github.com/ELELAB/Moonlight2R.

摘要

预测驱动基因(肿瘤抑制基因和癌基因)是理解癌症发生和发现潜在新疗法的重要步骤。我们最近提出了 Moonlight,这是一个生物信息学框架,可以基于组学整合以系统生物学为导向的方式预测驱动基因并对其进行分析。Moonlight 使用基因表达作为主要数据源,并将其与与癌症标志和调控网络相关的模式相结合,以识别致癌介质。一旦确定了致癌介质,就需要包括额外的证据层次,称为机制指标,以识别驱动基因并将观察到的基因表达变化与促进它们的潜在改变联系起来。这种机制指标例如候选基因的调控区域中的突变。在这里,我们开发了新功能并发布了 Moonlight2,为用户提供基于突变的机制指标作为第二层证据。这些功能分析癌症队列中的突变,将其分类为驱动突变和乘客突变。那些至少有一个驱动突变的致癌介质被保留为最终的驱动基因集。我们使用来自癌症基因组图谱的数据将 Moonlight2 应用于基底样乳腺癌亚型、肺腺癌和甲状腺癌。例如,在基底样乳腺癌中,我们发现了四个癌基因(COPZ2、SF3B4、KRTCAP2 和 POLR2J)和九个肿瘤抑制基因(KIR2DL4、KIF26B、ARL15、ARHGAP25、EMCN、GMFG、TPK1、NR5A2 和 TEK),它们的启动子区域含有驱动突变,可能解释了它们的失调。Moonlight2R 可在 https://github.com/ELELAB/Moonlight2R 上获得。

相似文献

6
Prognostic factors for return to work in breast cancer survivors.乳腺癌幸存者恢复工作的预后因素。
Cochrane Database Syst Rev. 2025 May 7;5(5):CD015124. doi: 10.1002/14651858.CD015124.pub2.

引用本文的文献

本文引用的文献

6
Hallmarks of Cancer: New Dimensions.癌症的特征:新视角。
Cancer Discov. 2022 Jan;12(1):31-46. doi: 10.1158/2159-8290.CD-21-1059.
7
Global mapping of cancers: The Cancer Genome Atlas and beyond.全球癌症图谱:癌症基因组图谱及其他。
Mol Oncol. 2021 Nov;15(11):2823-2840. doi: 10.1002/1878-0261.13056. Epub 2021 Jul 20.
9
Computational methods for cancer driver discovery: A survey.癌症驱动因素发现的计算方法:一项综述。
Theranostics. 2021 Mar 20;11(11):5553-5568. doi: 10.7150/thno.52670. eCollection 2021.
10
Gene Set Knowledge Discovery with Enrichr.基因集知识发现与 Enrichr
Curr Protoc. 2021 Mar;1(3):e90. doi: 10.1002/cpz1.90.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验