Suppr超能文献

使用 Moonlight 研究驱动基因预测的机制指标的工作流程。

A workflow to study mechanistic indicators for driver gene prediction with Moonlight.

机构信息

Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, Lyngby, Denmark.

Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA.

出版信息

Brief Bioinform. 2023 Sep 20;24(5). doi: 10.1093/bib/bbad274.

Abstract

Prediction of driver genes (tumor suppressors and oncogenes) is an essential step in understanding cancer development and discovering potential novel treatments. We recently proposed Moonlight as a bioinformatics framework to predict driver genes and analyze them in a system-biology-oriented manner based on -omics integration. Moonlight uses gene expression as a primary data source and combines it with patterns related to cancer hallmarks and regulatory networks to identify oncogenic mediators. Once the oncogenic mediators are identified, it is important to include extra levels of evidence, called mechanistic indicators, to identify driver genes and to link the observed gene expression changes to the underlying alteration that promotes them. Such a mechanistic indicator could be for example a mutation in the regulatory regions for the candidate gene. Here, we developed new functionalities and released Moonlight2 to provide the user with a mutation-based mechanistic indicator as a second layer of evidence. These functionalities analyze mutations in a cancer cohort to classify them into driver and passenger mutations. Those oncogenic mediators with at least one driver mutation are retained as the final set of driver genes. We applied Moonlight2 to the basal-like breast cancer subtype, lung adenocarcinoma and thyroid carcinoma using data from The Cancer Genome Atlas. For example, in basal-like breast cancer, we found four oncogenes (COPZ2, SF3B4, KRTCAP2 and POLR2J) and nine tumor suppressor genes (KIR2DL4, KIF26B, ARL15, ARHGAP25, EMCN, GMFG, TPK1, NR5A2 and TEK) containing a driver mutation in their promoter region, possibly explaining their deregulation. Moonlight2R is available at https://github.com/ELELAB/Moonlight2R.

摘要

预测驱动基因(肿瘤抑制基因和癌基因)是理解癌症发生和发现潜在新疗法的重要步骤。我们最近提出了 Moonlight,这是一个生物信息学框架,可以基于组学整合以系统生物学为导向的方式预测驱动基因并对其进行分析。Moonlight 使用基因表达作为主要数据源,并将其与与癌症标志和调控网络相关的模式相结合,以识别致癌介质。一旦确定了致癌介质,就需要包括额外的证据层次,称为机制指标,以识别驱动基因并将观察到的基因表达变化与促进它们的潜在改变联系起来。这种机制指标例如候选基因的调控区域中的突变。在这里,我们开发了新功能并发布了 Moonlight2,为用户提供基于突变的机制指标作为第二层证据。这些功能分析癌症队列中的突变,将其分类为驱动突变和乘客突变。那些至少有一个驱动突变的致癌介质被保留为最终的驱动基因集。我们使用来自癌症基因组图谱的数据将 Moonlight2 应用于基底样乳腺癌亚型、肺腺癌和甲状腺癌。例如,在基底样乳腺癌中,我们发现了四个癌基因(COPZ2、SF3B4、KRTCAP2 和 POLR2J)和九个肿瘤抑制基因(KIR2DL4、KIF26B、ARL15、ARHGAP25、EMCN、GMFG、TPK1、NR5A2 和 TEK),它们的启动子区域含有驱动突变,可能解释了它们的失调。Moonlight2R 可在 https://github.com/ELELAB/Moonlight2R 上获得。

相似文献

1
A workflow to study mechanistic indicators for driver gene prediction with Moonlight.
Brief Bioinform. 2023 Sep 20;24(5). doi: 10.1093/bib/bbad274.
2
Comprehensive mutational profiling identifies new driver events in cutaneous leiomyosarcoma.
Br J Dermatol. 2025 Jan 24;192(2):335-343. doi: 10.1093/bjd/ljae386.
5
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
6
Prognostic factors for return to work in breast cancer survivors.
Cochrane Database Syst Rev. 2025 May 7;5(5):CD015124. doi: 10.1002/14651858.CD015124.pub2.
7
Can a Liquid Biopsy Detect Circulating Tumor DNA With Low-passage Whole-genome Sequencing in Patients With a Sarcoma? A Pilot Evaluation.
Clin Orthop Relat Res. 2025 Jan 1;483(1):39-48. doi: 10.1097/CORR.0000000000003161. Epub 2024 Jun 21.
9
Home treatment for mental health problems: a systematic review.
Health Technol Assess. 2001;5(15):1-139. doi: 10.3310/hta5150.
10
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.

引用本文的文献

1
Targeting Regulatory Noncoding RNAs in Human Cancer: The State of the Art in Clinical Trials.
Pharmaceutics. 2025 Apr 4;17(4):471. doi: 10.3390/pharmaceutics17040471.
2
Revealing cancer driver genes through integrative transcriptomic and epigenomic analyses with Moonlight.
PLoS Comput Biol. 2025 Apr 21;21(4):e1012999. doi: 10.1371/journal.pcbi.1012999. eCollection 2025 Apr.

本文引用的文献

1
Persistent mutation burden drives sustained anti-tumor immune responses.
Nat Med. 2023 Feb;29(2):440-449. doi: 10.1038/s41591-022-02163-w. Epub 2023 Jan 26.
3
Persistent DNA damage and oncogenic stress-induced Trem1 promotes leukemia in mice.
Haematologica. 2022 Nov 1;107(11):2576-2588. doi: 10.3324/haematol.2021.280404.
4
Next-generation Sequencing Reveals Age-dependent Genetic Underpinnings in Lung adenocarcinoma.
J Cancer. 2022 Mar 6;13(5):1565-1572. doi: 10.7150/jca.65370. eCollection 2022.
5
Comprehensive evaluation of computational methods for predicting cancer driver genes.
Brief Bioinform. 2022 Mar 10;23(2). doi: 10.1093/bib/bbab548.
6
Hallmarks of Cancer: New Dimensions.
Cancer Discov. 2022 Jan;12(1):31-46. doi: 10.1158/2159-8290.CD-21-1059.
7
Global mapping of cancers: The Cancer Genome Atlas and beyond.
Mol Oncol. 2021 Nov;15(11):2823-2840. doi: 10.1002/1878-0261.13056. Epub 2021 Jul 20.
9
Computational methods for cancer driver discovery: A survey.
Theranostics. 2021 Mar 20;11(11):5553-5568. doi: 10.7150/thno.52670. eCollection 2021.
10
Gene Set Knowledge Discovery with Enrichr.
Curr Protoc. 2021 Mar;1(3):e90. doi: 10.1002/cpz1.90.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验