Departamento de Estratigrafía y Paleontología, Facultad de Ciencias, Universidad de Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain.
Department of Paleozoology, Swedish Museum of Natural History, Frescativägen 40, 11-418 Stockholm, Sweden.
J Struct Biol. 2013 Sep;183(3):368-376. doi: 10.1016/j.jsb.2013.07.014. Epub 2013 Aug 6.
Nacre tablets of mollusks develop two kinds of features when either the calcium carbonate or the organic portions are removed: (1) parallel lineations (vermiculations) formed by elongated carbonate rods, and (2) hourglass patterns, which appear in high relief when etched or in low relief if bleached. In untreated tablets, SEM and AFM data show that vermiculations correspond to aligned and fused aragonite nanogloblules, which are partly surrounded by thin organic pellicles. EBSD mapping of the surfaces of tablets indicates that the vermiculations are invariably parallel to the crystallographic a-axis of aragonite and that the triangles are aligned with the b-axis and correspond to the advance of the {010} faces during the growth of the tablet. According to our interpretation, the vermiculations appear because organic molecules during growth are expelled from the a-axis, where the Ca-CO3 bonds are the shortest. In this way, the subunits forming nacre merge uninterruptedly, forming chains parallel to the a-axis, whereas the organic molecules are expelled to the sides of these chains. Hourglass patterns would be produced by preferential adsorption of organic molecules along the {010}, as compared to the {100} faces. A model is presented for the nanostructure of nacre tablets. SEM and EBSD data also show the existence within the tablets of nanocrystalline units, which are twinned on {110} with the rest of the tablet. Our study shows that the growth dynamics of nacre tablets (and bioaragonite in general) results from the interaction at two different and mutually related levels: tablets and nanogranules.
(1)由拉长的碳酸钙棒形成的平行线纹(蠕虫状线纹),和(2)沙漏图案,如果经过蚀刻则呈现出高浮雕效果,如果经过漂白则呈现出低浮雕效果。在未经处理的薄片中,SEM 和 AFM 数据表明,蠕虫状线纹对应于排列和融合的文石纳米球,这些纳米球部分被薄的有机薄膜包围。薄片表面的 EBSD 映射表明,蠕虫状线纹始终与文石的晶轴平行,并且三角形与 b 轴对齐,对应于薄片生长过程中{010}面的推进。根据我们的解释,蠕虫状线纹的出现是因为在生长过程中有机分子从最短的 Ca-CO3 键所在的 a 轴被排出。这样,形成珍珠层的亚单位就可以不间断地融合,形成与 a 轴平行的链,而有机分子则被排出到这些链的两侧。沙漏图案是由于有机分子优先沿着{010}面而不是{100}面被吸附而产生的。我们提出了一种珍珠层薄片的纳米结构模型。SEM 和 EBSD 数据还表明,在薄片内部存在纳米晶单元,这些单元在{110}面上与薄片的其余部分孪晶。我们的研究表明,珍珠层薄片(以及一般的生物文石)的生长动力学是由两个不同但相互关联的层面上的相互作用产生的:薄片和纳米颗粒。