Best Richard Johannes, Stier Deborah, Kuhrts Lucas, Zlotnikov Igor
B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany.
J Am Chem Soc. 2025 Jan 8;147(1):1-9. doi: 10.1021/jacs.4c11940. Epub 2024 Dec 16.
Crystallization by amorphous particle attachment, a nonclassical crystal growth mode, is prevalent in minerals formed by living tissues. It allows the organism to intervene at every step of crystal growth, i.e., particle formation, stabilization, accretion, and crystallization, and thus to orchestrate biomineral morphogenesis and crystallographic texturing; all toward achieving a required functionality for the organism. Therefore, significant effort is aimed at achieving similar control and crystal growth tunability through bioinspired and biomimetic synthetic means. This Perspective examines the driving forces and the kinetics of crystallization by amorphous particle attachment in a biological setting, and through an analogy to classical molecule-by-molecule crystallization, it establishes distinct crystal growth mechanisms. It underlines the role of physics and chemistry of materials in the "Growth and Form" of biogenic minerals.
通过无定形颗粒附着进行结晶,这是一种非经典的晶体生长模式,在生物组织形成的矿物质中普遍存在。它使生物体能够在晶体生长的每一步进行干预,即颗粒形成、稳定、聚集和结晶,从而精心编排生物矿化的形态发生和晶体织构;所有这些都是为了实现生物体所需的功能。因此,人们付出了巨大努力,旨在通过受生物启发和仿生合成手段实现类似的控制和晶体生长可调性。本视角探讨了生物环境中通过无定形颗粒附着进行结晶的驱动力和动力学,并通过与经典的逐个分子结晶进行类比,建立了独特的晶体生长机制。它强调了材料物理和化学在生物成因矿物的“生长与形态”中的作用。