Institute of General Food Chemistry, Faculty of Biotechnology and Food Sciences, Technical University of Lodz, ul. Stefanowskiego 4/10, 90-924 Lodz, Poland.
Spectrochim Acta A Mol Biomol Spectrosc. 2013 Dec;116:183-95. doi: 10.1016/j.saa.2013.07.011. Epub 2013 Jul 18.
In this study the effect of carboxylic group substitution in the 2 and 5 position of indole ring on the photophysics of the parent indole chromophore has been studied. The photophysical parameters crucial in triplet state decay mechanism of aqueous indole-2-carboxylic acid (I2C) and indole-5-carboxylic acid (I5C) have been determined applying our previously proposed methodology based on the heavy atom effect and fluorescence and phosphorescence decay kinetics [Kowalska-Baron et al., 2012]. The determined time-resolved phosphorescence spectra of I2C and I5C are red-shifted as compared to that of the parent indole. This red-shift was especially evident in the case of I2C and may indicate the possibility of hydrogen bonded complex formation incorporating carbonyl CO, the NH group of I2C and, possibly, surrounding water molecules. The possibility of the excited state charge transfer process and the subsequent electronic charge redistribution in such a hydrogen bonded complex may also be postulated. The resulting stabilization of the I2C triplet state is manifested by its relatively long phosphorescence lifetime in aqueous solution (912 μs). The relatively short phosphorescence lifetime of I5C (56 μs) may be the consequence of more effective ground-state quenching of I5 C triplet state. This hypothesis may be strengthened by the significantly larger value of the determined rate constant of I5C triplet state quenching by its ground-state (4.4 × 10(8)M(-1)s(-1)) as compared to that for indole (6.8 × 10(7)M(-1)s(-1)) and I2C (2.3 × 10(7)M(-1)s(-1)). The determined bimolecular rate constant for triplet state quenching by iodide [Formula: see text] is equal to 1 × 10(4)M(-1)s(-1); 6 × 10(3)M(-1)s(-1) and 2.7 × 10(4)M(-1)s(-1) for indole, I2 C and I5 C, respectively. In order to obtain a better insight into iodide quenching of I2C and I5C triplet states in aqueous solution, the temperature dependence of the bimolecular rate constants for iodide quenching of the triplet states has been expressed in Arrhenius form. The linearity of the obtained Arrhenius plots clearly indicated the existence of one temperature-dependent non-radiative process for the de-excitation of I2C and I5C triplet state in the presence of iodide. This process may be attributed to the solute-quenching by iodide and, most probably, proceeds via reversibly formed exciplex. The activation energies obtained from linear Arrhenius plots (1.89 kcal/mol for I5 C; 2.55 kcal/mol for I2 C) are smaller as compared to that for diffusion controlled reactions in aqueous solution (about 4 kcal/mol), which may indicate the great importance of the electrostatic interactions between solute and iodide ions in lowering the energy barrier needed for the formation of the triplet-quencher complex. Based on the theoretical predictions (at the DFT(CAM-B3LYP)/6-31+G(d,p) level of theory) and careful analysis of the obtained FTIR spectra it may be concluded that in the solid state I2 C and I5 C molecules form associates by intermolecular NH · · · OC and OH · · · OC hydrogen bonding interactions, whereas the existence of intramolecular NH · · · OC interactions in the solid state of I2C and I5C is highly unlikely.
在这项研究中,研究了吲哚环 2 位和 5 位羧酸取代基对母体吲哚生色团光物理性质的影响。应用我们先前提出的基于重原子效应和荧光和磷光衰减动力学的方法,确定了水相吲哚-2-羧酸(I2C)和吲哚-5-羧酸(I5C)三重态衰减机制中关键的光物理参数[Kowalska-Baron 等人,2012]。与母体吲哚相比,确定的 I2C 和 I5C 的时间分辨磷光光谱发生红移。这种红移在 I2C 的情况下尤为明显,可能表明形成了包含羰基 CO、I2C 的 NH 基团和可能的周围水分子的氢键复合物的可能性。也可以假设在这种氢键复合物中发生激发态电荷转移过程和随后的电子电荷再分布。在水溶液中,I2C 三重态的相对较长磷光寿命(912 μs)证明了其稳定性。I5C 的相对较短的磷光寿命(56 μs)可能是由于 I5C 三重态的基态淬灭更为有效。通过其基态(4.4×10^8 M^-1 s^-1)确定的 I5C 三重态淬灭的速率常数与吲哚(6.8×10^7 M^-1 s^-1)和 I2C(2.3×10^7 M^-1 s^-1)相比,明显更大,这一假设可能会得到加强。通过碘化物[公式:见正文]确定的三重态猝灭的双分子速率常数为 1×10^4 M^-1 s^-1;分别为吲哚、I2C 和 I5C 的 6×10^3 M^-1 s^-1 和 2.7×10^4 M^-1 s^-1。为了更深入地了解碘化物在水溶液中对 I2C 和 I5C 三重态的猝灭,用阿仑尼乌斯形式表达了碘化物对三重态的双分子猝灭速率常数随温度的依赖性。获得的阿仑尼乌斯图的线性清楚地表明,在存在碘化物的情况下,I2C 和 I5C 三重态的非辐射去激发存在一个依赖于温度的非辐射过程。该过程可能归因于碘化物对溶质的猝灭,并且很可能通过可逆形成的激基复合物进行。从线性阿仑尼乌斯图获得的活化能(I5C 为 1.89 kcal/mol;I2C 为 2.55 kcal/mol)小于水溶液中扩散控制反应的活化能(约 4 kcal/mol),这可能表明溶质和碘化物离子之间的静电相互作用对于降低形成三重态猝灭剂复合物所需的能垒非常重要。基于理论预测(在 DFT(CAM-B3LYP)/6-31+G(d,p)理论水平)和对获得的傅里叶变换红外光谱的仔细分析,可以得出结论,在固态中,I2C 和 I5C 分子通过分子间 NH···OC 和 OH···OC 氢键相互作用形成缔合物,而 I2C 和 I5C 固态中存在分子内 NH···OC 相互作用的可能性极小。