Suppr超能文献

六种糖基转移酶在新月柄杆菌细胞壁组装中的多种功能。

Diverse functions for six glycosyltransferases in Caulobacter crescentus cell wall assembly.

机构信息

Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Princeton, New Jersey, USA.

出版信息

J Bacteriol. 2013 Oct;195(19):4527-35. doi: 10.1128/JB.00600-13. Epub 2013 Aug 9.

Abstract

The essential process of peptidoglycan synthesis requires two enzymatic activities, transpeptidation and transglycosylation. While the PBP2 and PBP3 transpeptidases perform highly specialized functions that are widely conserved, the specific roles of different glycosyltransferases are poorly understood. For example, Caulobacter crescentus encodes six glycosyltransferase paralogs of largely unknown function. Using genetic analyses, we found that Caulobacter glycosyltransferases are primarily redundant but that PbpX is responsible for most of the essential glycosyltransferase activity. Cells containing PbpX as their sole glycosyltransferase are viable, and the loss of pbpX leads to a general defect in the integrity of the cell wall structure even in the presence of the other five glycosyltransferases. However, neither PbpX nor any of its paralogs is required for the specific processes of cell elongation or division, while the cell wall synthesis required for stalk biogenesis is only partially disrupted in several of the glycosyltransferase mutants. Despite their genetic redundancy, Caulobacter glycosyltransferases exhibit different subcellular localizations. We suggest that these enzymes have specialized roles and normally function in distinct subcomplexes but retain the ability to substitute for one another so as to ensure the robustness of the peptidoglycan synthesis process.

摘要

肽聚糖合成的基本过程需要两种酶活性,转肽和转糖基化。虽然 PBP2 和 PBP3 转肽酶具有广泛保守的高度专业化功能,但不同糖基转移酶的具体作用仍知之甚少。例如,新月柄杆菌编码六个糖基转移酶的旁系同源物,其功能在很大程度上是未知的。通过遗传分析,我们发现新月柄杆菌糖基转移酶主要是冗余的,但 PbpX 负责大多数必需的糖基转移酶活性。仅含有 PbpX 作为其唯一糖基转移酶的细胞是存活的,而 pbpX 的缺失会导致细胞壁结构的完整性普遍缺陷,即使存在其他五种糖基转移酶也是如此。然而,无论是 PbpX 还是其任何旁系同源物都不是细胞伸长或分裂的特定过程所必需的,而在几个糖基转移酶突变体中,茎生成所需的细胞壁合成仅部分受到破坏。尽管它们在遗传上是冗余的,但新月柄杆菌糖基转移酶表现出不同的亚细胞定位。我们认为这些酶具有专门的作用,通常在不同的亚复合物中发挥作用,但保留了相互替代的能力,以确保肽聚糖合成过程的稳健性。

相似文献

1
Diverse functions for six glycosyltransferases in Caulobacter crescentus cell wall assembly.
J Bacteriol. 2013 Oct;195(19):4527-35. doi: 10.1128/JB.00600-13. Epub 2013 Aug 9.
2
Function and localization dynamics of bifunctional penicillin-binding proteins in Caulobacter crescentus.
J Bacteriol. 2014 Apr;196(8):1627-39. doi: 10.1128/JB.01194-13. Epub 2014 Feb 14.
3
LytM factors affect the recruitment of autolysins to the cell division site in Caulobacter crescentus.
Mol Microbiol. 2017 Nov;106(3):419-438. doi: 10.1111/mmi.13775. Epub 2017 Sep 14.
7
A specialized MreB-dependent cell wall biosynthetic complex mediates the formation of stalk-specific peptidoglycan in Caulobacter crescentus.
PLoS Genet. 2019 Feb 1;15(2):e1007897. doi: 10.1371/journal.pgen.1007897. eCollection 2019 Feb.
8
A New Essential Cell Division Protein in Caulobacter crescentus.
J Bacteriol. 2017 Mar 28;199(8). doi: 10.1128/JB.00811-16. Print 2017 Apr 15.
9
OpgH is an essential regulator of morphology.
mBio. 2024 Sep 11;15(9):e0144324. doi: 10.1128/mbio.01443-24. Epub 2024 Aug 15.

引用本文的文献

1
Cell cycle dependent coordination of surface layer biogenesis in Caulobacter crescentus.
Nat Commun. 2024 Apr 18;15(1):3355. doi: 10.1038/s41467-024-47529-5.
2
Elongation at Midcell in Preparation of Cell Division Requires FtsZ, but Not MreB nor PBP2 in .
Front Microbiol. 2021 Aug 27;12:732031. doi: 10.3389/fmicb.2021.732031. eCollection 2021.
4
An Essential Regulator of Bacterial Division Links FtsZ to Cell Wall Synthase Activation.
Curr Biol. 2019 May 6;29(9):1460-1470.e4. doi: 10.1016/j.cub.2019.03.066. Epub 2019 Apr 25.
5
A specialized MreB-dependent cell wall biosynthetic complex mediates the formation of stalk-specific peptidoglycan in Caulobacter crescentus.
PLoS Genet. 2019 Feb 1;15(2):e1007897. doi: 10.1371/journal.pgen.1007897. eCollection 2019 Feb.
6
Is Longitudinal Division in Rod-Shaped Bacteria a Matter of Swapping Axis?
Front Microbiol. 2018 May 8;9:822. doi: 10.3389/fmicb.2018.00822. eCollection 2018.
7
Stalk formation of Brevundimonas and how it compares to Caulobacter crescentus.
PLoS One. 2017 Sep 8;12(9):e0184063. doi: 10.1371/journal.pone.0184063. eCollection 2017.
8
A novel membrane anchor for FtsZ is linked to cell wall hydrolysis in Caulobacter crescentus.
Mol Microbiol. 2016 Jul;101(2):265-80. doi: 10.1111/mmi.13388. Epub 2016 May 3.
9
Molecular mechanisms for the evolution of bacterial morphologies and growth modes.
Front Microbiol. 2015 Jun 9;6:580. doi: 10.3389/fmicb.2015.00580. eCollection 2015.

本文引用的文献

2
In Situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent D-amino acids.
Angew Chem Int Ed Engl. 2012 Dec 7;51(50):12519-23. doi: 10.1002/anie.201206749. Epub 2012 Oct 10.
3
Cooperativity of peptidoglycan synthases active in bacterial cell elongation.
Mol Microbiol. 2012 Jul;85(1):179-94. doi: 10.1111/j.1365-2958.2012.08103.x. Epub 2012 Jun 5.
4
Osmolality-dependent relocation of penicillin-binding protein PBP2 to the division site in Caulobacter crescentus.
J Bacteriol. 2012 Jun;194(12):3116-27. doi: 10.1128/JB.00260-12. Epub 2012 Apr 13.
5
The LovK-LovR two-component system is a regulator of the general stress pathway in Caulobacter crescentus.
J Bacteriol. 2012 Jun;194(12):3038-49. doi: 10.1128/JB.00182-12. Epub 2012 Mar 9.
8
Bacterial cell curvature through mechanical control of cell growth.
EMBO J. 2009 May 6;28(9):1208-19. doi: 10.1038/emboj.2009.61. Epub 2009 Mar 12.
9
Molecular organization of Gram-negative peptidoglycan.
Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18953-7. doi: 10.1073/pnas.0808035105. Epub 2008 Nov 24.
10
Localization of PBP3 in Caulobacter crescentus is highly dynamic and largely relies on its functional transpeptidase domain.
Mol Microbiol. 2008 Nov;70(3):634-51. doi: 10.1111/j.1365-2958.2008.06432.x. Epub 2008 Sep 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验