Suppr超能文献

细菌分裂的必需调节剂将 FtsZ 与细胞壁合成酶的激活联系起来。

An Essential Regulator of Bacterial Division Links FtsZ to Cell Wall Synthase Activation.

机构信息

Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA.

出版信息

Curr Biol. 2019 May 6;29(9):1460-1470.e4. doi: 10.1016/j.cub.2019.03.066. Epub 2019 Apr 25.

Abstract

Bacterial growth and division require insertion of new peptidoglycan (PG) into the existing cell wall by PG synthase enzymes. Emerging evidence suggests that many PG synthases require activation to function; however, it is unclear how activation of division-specific PG synthases occurs. The FtsZ cytoskeleton has been implicated as a regulator of PG synthesis during division, but the mechanisms through which it acts are unknown. Here, we show that FzlA, an FtsZ-binding protein and essential regulator of constriction in Caulobacter crescentus, helps link FtsZ to PG synthesis to promote division. We find that hyperactive mutants of the PG synthases FtsW and FtsI specifically render fzlA, but not other division genes, non-essential. However, FzlA is still required to maintain proper constriction rate and efficiency in a hyperactive PG synthase background. Intriguingly, loss of fzlA in the presence of hyperactivated FtsWI causes cells to rotate about the division plane during constriction and sensitizes cells to cell-wall-specific antibiotics. We demonstrate that FzlA-dependent signaling to division-specific PG synthesis is conserved in another α-proteobacterium, Agrobacterium tumefaciens. These data establish that FzlA helps link FtsZ to cell wall remodeling and is required for signaling to both activate and spatially orient PG synthesis during division. Overall, our findings support the paradigm that activation of SEDS-PBP PG synthases is a broadly conserved requirement for bacterial morphogenesis.

摘要

细菌的生长和分裂需要通过 PG 合成酶将新的肽聚糖(PG)插入到现有细胞壁中。新出现的证据表明,许多 PG 合成酶需要激活才能发挥作用;然而,目前尚不清楚如何激活特定于分裂的 PG 合成酶。FtsZ 细胞骨架已被认为是分裂过程中 PG 合成的调节剂,但它的作用机制尚不清楚。在这里,我们表明,FtsZ 结合蛋白 FzlA 是新月柄杆菌收缩的必需调节剂,有助于将 FtsZ 与 PG 合成联系起来,以促进分裂。我们发现,PG 合成酶 FtsW 和 FtsI 的超活性突变体特异性使 fzlA(但不是其他分裂基因)成为非必需的。然而,在高活性 PG 合成酶背景下,FzlA 仍然需要维持适当的收缩速率和效率。有趣的是,在高活性 FtsWI 的存在下失去 fzlA 会导致细胞在收缩过程中围绕分裂平面旋转,并使细胞对细胞壁特异性抗生素敏感。我们证明,在另一种α变形菌根瘤农杆菌中,FzlA 对特定于分裂的 PG 合成的信号转导是保守的。这些数据表明,FzlA 有助于将 FtsZ 与细胞壁重塑联系起来,并且是在分裂过程中激活和空间定向 PG 合成的信号所必需的。总的来说,我们的研究结果支持了这样一种观点,即 SEDS-PBP PG 合成酶的激活是细菌形态发生的广泛保守要求。

相似文献

1
An Essential Regulator of Bacterial Division Links FtsZ to Cell Wall Synthase Activation.
Curr Biol. 2019 May 6;29(9):1460-1470.e4. doi: 10.1016/j.cub.2019.03.066. Epub 2019 Apr 25.
2
FzlA, an essential regulator of FtsZ filament curvature, controls constriction rate during Caulobacter division.
Mol Microbiol. 2018 Jan;107(2):180-197. doi: 10.1111/mmi.13876. Epub 2017 Dec 1.
3
Integration of cell wall synthesis and chromosome segregation during cell division in Caulobacter.
J Cell Biol. 2024 Feb 5;223(2). doi: 10.1083/jcb.202211026. Epub 2023 Nov 28.
4
The cell division protein FzlA performs a conserved function in diverse alphaproteobacteria.
J Bacteriol. 2024 Oct 24;206(10):e0022524. doi: 10.1128/jb.00225-24. Epub 2024 Sep 18.
7
Imaging-based identification of a critical regulator of FtsZ protofilament curvature in Caulobacter.
Mol Cell. 2010 Sep 24;39(6):975-87. doi: 10.1016/j.molcel.2010.08.027.
8
Cell constriction requires processive septal peptidoglycan synthase movement independent of FtsZ treadmilling in Staphylococcus aureus.
Nat Microbiol. 2024 Apr;9(4):1049-1063. doi: 10.1038/s41564-024-01629-6. Epub 2024 Mar 13.
9
Bacterial cytokinesis: FzlA frizzes FtsZ filaments for fission force.
Curr Biol. 2010 Dec 7;20(23):R1024-7. doi: 10.1016/j.cub.2010.10.052.

引用本文的文献

1
The divisome is a self-enhancing machine in Escherichia coli and Caulobacter crescentus.
Nat Commun. 2024 Sep 18;15(1):8198. doi: 10.1038/s41467-024-52217-5.
2
The cell division protein FzlA performs a conserved function in diverse alphaproteobacteria.
J Bacteriol. 2024 Oct 24;206(10):e0022524. doi: 10.1128/jb.00225-24. Epub 2024 Sep 18.
3
One-step genome engineering in bee gut bacterial symbionts.
mBio. 2024 Sep 11;15(9):e0139224. doi: 10.1128/mbio.01392-24. Epub 2024 Aug 6.
4
Role of the antiparallel double-stranded filament form of FtsA in activating the divisome.
mBio. 2024 Aug 14;15(8):e0168724. doi: 10.1128/mbio.01687-24. Epub 2024 Jul 23.
5
Role of the antiparallel double-stranded filament form of FtsA in activating the divisome.
bioRxiv. 2024 Jun 30:2024.06.24.600433. doi: 10.1101/2024.06.24.600433.
6
Stay on track - revelations of bacterial cell wall synthesis enzymes and things that go by single-molecule imaging.
Curr Opin Microbiol. 2024 Jun;79:102490. doi: 10.1016/j.mib.2024.102490. Epub 2024 May 30.
7
Cell cycle dependent coordination of surface layer biogenesis in Caulobacter crescentus.
Nat Commun. 2024 Apr 18;15(1):3355. doi: 10.1038/s41467-024-47529-5.
8
Cell constriction requires processive septal peptidoglycan synthase movement independent of FtsZ treadmilling in Staphylococcus aureus.
Nat Microbiol. 2024 Apr;9(4):1049-1063. doi: 10.1038/s41564-024-01629-6. Epub 2024 Mar 13.
9
Integration of cell wall synthesis and chromosome segregation during cell division in Caulobacter.
J Cell Biol. 2024 Feb 5;223(2). doi: 10.1083/jcb.202211026. Epub 2023 Nov 28.
10
Insights into the assembly and regulation of the bacterial divisome.
Nat Rev Microbiol. 2024 Jan;22(1):33-45. doi: 10.1038/s41579-023-00942-x. Epub 2023 Jul 31.

本文引用的文献

1
Agrobacterium tumefaciens divisome proteins regulate the transition from polar growth to cell division.
Mol Microbiol. 2019 Apr;111(4):1074-1092. doi: 10.1111/mmi.14212. Epub 2019 Mar 4.
2
FtsW is a peptidoglycan polymerase that is functional only in complex with its cognate penicillin-binding protein.
Nat Microbiol. 2019 Apr;4(4):587-594. doi: 10.1038/s41564-018-0345-x. Epub 2019 Jan 28.
3
A central role for PBP2 in the activation of peptidoglycan polymerization by the bacterial cell elongation machinery.
PLoS Genet. 2018 Oct 18;14(10):e1007726. doi: 10.1371/journal.pgen.1007726. eCollection 2018 Oct.
4
Constriction Rate Modulation Can Drive Cell Size Control and Homeostasis in C. crescentus.
iScience. 2018 Jun 29;4:180-189. doi: 10.1016/j.isci.2018.05.020. Epub 2018 May 30.
5
Gain-of-function variants of FtsA form diverse oligomeric structures on lipids and enhance FtsZ protofilament bundling.
Mol Microbiol. 2018 Sep;109(5):676-693. doi: 10.1111/mmi.14069. Epub 2018 Aug 1.
6
Cell Wall Biogenesis During Elongation and Division in the Plant Pathogen Agrobacterium tumefaciens.
Curr Top Microbiol Immunol. 2018;418:87-110. doi: 10.1007/82_2018_92.
8
FzlA, an essential regulator of FtsZ filament curvature, controls constriction rate during Caulobacter division.
Mol Microbiol. 2018 Jan;107(2):180-197. doi: 10.1111/mmi.13876. Epub 2017 Dec 1.
9
FtsEX-mediated regulation of the final stages of cell division reveals morphogenetic plasticity in Caulobacter crescentus.
PLoS Genet. 2017 Sep 8;13(9):e1006999. doi: 10.1371/journal.pgen.1006999. eCollection 2017 Sep.
10
LytM factors affect the recruitment of autolysins to the cell division site in Caulobacter crescentus.
Mol Microbiol. 2017 Nov;106(3):419-438. doi: 10.1111/mmi.13775. Epub 2017 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验