Suppr超能文献

验证一种用于识别撒哈拉以南非洲致倦库蚊孳生地的遥感模型。

Validation of a remote sensing model to identify Simulium damnosum s.l. breeding sites in Sub-Saharan Africa.

机构信息

Global Health Infectious Disease Research Program, Department of Global Health, University of South Florida, Tampa, Florida, United States of America.

出版信息

PLoS Negl Trop Dis. 2013 Jul 25;7(7):e2342. doi: 10.1371/journal.pntd.0002342. Print 2013.

Abstract

BACKGROUND

Recently, most onchocerciasis control programs have begun to focus on elimination. Developing an effective elimination strategy relies upon accurately mapping the extent of endemic foci. In areas of Africa that suffer from a lack of infrastructure and/or political instability, developing such accurate maps has been difficult. Onchocerciasis foci are localized near breeding sites for the black fly vectors of the infection. The goal of this study was to conduct ground validation studies to evaluate the sensitivity and specificity of a remote sensing model developed to predict S. damnosum s.l. breeding sites.

METHODOLOGY/PRINCIPAL FINDINGS: Remote sensing images from Togo were analyzed to identify areas containing signature characteristics of S. damnosum s.l. breeding habitat. All 30 sites with the spectral signature were found to contain S. damnosum larvae, while 0/52 other sites judged as likely to contain larvae were found to contain larvae. The model was then used to predict breeding sites in Northern Uganda. This area is hyper-endemic for onchocerciasis, but political instability had precluded mass distribution of ivermectin until 2009. Ground validation revealed that 23/25 sites with the signature contained S. damnosum larvae, while 8/10 sites examined lacking the signature were larvae free. Sites predicted to have larvae contained significantly more larvae than those that lacked the signature.

CONCLUSIONS/SIGNIFICANCE: This study suggests that a signature extracted from remote sensing images may be used to predict the location of S. damnosum s.l. breeding sites with a high degree of accuracy. This method should be of assistance in predicting communities at risk for onchocerciasis in areas of Africa where ground-based epidemiological surveys are difficult to implement.

摘要

背景

最近,大多数盘尾丝虫病控制项目开始侧重于消除。制定有效的消除策略依赖于准确绘制流行焦点的范围。在基础设施和/或政治不稳定的非洲地区,很难制定出如此准确的地图。盘尾丝虫病焦点定位于感染的黑蝇传播媒介的繁殖地附近。本研究的目的是进行地面验证研究,以评估开发的预测 S. damnosum s.l. 繁殖地的遥感模型的灵敏度和特异性。

方法/主要发现:对多哥的遥感图像进行了分析,以确定包含 S. damnosum s.l. 繁殖栖息地特征的区域。所有具有特征光谱的 30 个地点均发现含有 S. damnosum 幼虫,而 0/52 个被判断为可能含有幼虫的其他地点则未发现幼虫。然后,该模型被用于预测乌干达北部的繁殖地。该地区是盘尾丝虫病的高度流行区,但政治不稳定使得 2009 年之前无法大规模分发伊维菌素。地面验证显示,具有特征的 23/25 个地点含有 S. damnosum 幼虫,而 8/10 个缺乏特征的地点则没有幼虫。具有幼虫特征的地点比缺乏特征的地点含有更多的幼虫。

结论/意义:本研究表明,从遥感图像中提取的特征可以用于预测 S. damnosum s.l. 繁殖地的位置,具有很高的准确性。这种方法应该有助于预测在地面流行病学调查难以实施的非洲地区,有感染盘尾丝虫病风险的社区。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ef7/3723572/d02a867d19f9/pntd.0002342.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验