School of Life Sciences, University of Warwick, Coventry, UK.
J Neurochem. 2014 Jan;128(1):111-24. doi: 10.1111/jnc.12397. Epub 2013 Sep 12.
Cerebral ischaemia rapidly depletes cellular ATP. Whilst this deprives brain tissue of a valuable energy source, the concomitant production of adenosine mitigates the damaging effects of energy failure by suppressing neuronal activity. However, the production of adenosine and other metabolites, and their loss across the blood-brain barrier, deprives the brain of substrates for the purine salvage pathway, the primary means by which the brain makes ATP. Because of this, cerebral ATP levels remain depressed after brain injury. To test whether manipulating cellular ATP levels in brain tissue could affect functional neuronal outcomes in response to oxygen/glucose deprivation (OGD), we examined the effects of creatine and d-ribose and adenine (RibAde). In hippocampal slices creatine delayed ATP breakdown, reduced adenosine release, retarded both the depression of synaptic transmission and the anoxic depolarization caused by OGD, and improved the recovery of transmission. In contrast, RibAde increased cellular ATP, caused increased OGD-induced adenosine release and accelerated the depression of synaptic transmission, but did not improve functional recovery. However, RibAde improved the viability of cerebellar granule cells when administered after OGD. Our data indicate that RibAde may be effective in promoting recovery of brain tissue after injury, potentially via enhancement of salvage-mediated ATP production.
脑缺血会迅速消耗细胞内的 ATP。虽然这使脑组织失去了宝贵的能量来源,但同时产生的腺苷通过抑制神经元活动来减轻能量衰竭的破坏性影响。然而,腺苷和其他代谢产物的产生及其穿过血脑屏障的损失,剥夺了大脑嘌呤补救途径的底物,这是大脑产生 ATP 的主要途径。因此,脑损伤后大脑中的 ATP 水平仍然降低。为了测试在脑组织中操纵细胞内 ATP 水平是否会影响对缺氧/葡萄糖剥夺(OGD)的功能性神经元结果,我们研究了肌酸和 D-核糖和腺嘌呤(RibAde)的作用。在海马切片中,肌酸延迟了 ATP 的分解,减少了腺苷的释放,延缓了 OGD 引起的突触传递抑制和缺氧去极化,并且改善了传递的恢复。相比之下,RibAde 增加了细胞内的 ATP,导致 OGD 诱导的腺苷释放增加,并加速了突触传递的抑制,但并未改善功能恢复。然而,RibAde 在 OGD 后给药时可提高小脑颗粒细胞的存活率。我们的数据表明,RibAde 可能通过增强补救介导的 ATP 产生而在损伤后促进脑组织的恢复。