School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk 712-749, South Korea.
Nanoscale. 2013 Oct 7;5(19):9238-46. doi: 10.1039/c3nr02678g. Epub 2013 Aug 13.
Band gap narrowing is important and advantageous for potential visible light photocatalytic applications involving metal oxide nanostructures. This paper reports a simple biogenic approach for the promotion of oxygen vacancies in pure zinc oxide (p-ZnO) nanostructures using an electrochemically active biofilm (EAB), which is different from traditional techniques for narrowing the band gap of nanomaterials. The novel protocol improved the visible photocatalytic activity of modified ZnO (m-ZnO) nanostructures through the promotion of oxygen vacancies, which resulted in band gap narrowing of the ZnO nanostructure (Eg = 3.05 eV) without dopants. X-ray diffraction, UV-visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy, Raman spectroscopy, photoluminescence spectroscopy and high resolution transmission electron microscopy confirmed the oxygen vacancy and band gap narrowing of m-ZnO. m-ZnO enhanced the visible light catalytic activity for the degradation of different classes of dyes and 4-nitrophenol compared to p-ZnO, which confirmed the band gap narrowing because of oxygen defects. This study shed light on the modification of metal oxide nanostructures by EAB with a controlled band structure.
带隙缩窄对于涉及金属氧化物纳米结构的潜在可见光光催化应用非常重要和有利。本文报道了一种简单的生物法,使用电化学活性生物膜(EAB)在纯氧化锌(p-ZnO)纳米结构中促进氧空位,这与传统的纳米材料带隙缩窄技术不同。该新方案通过促进氧空位提高了改性 ZnO(m-ZnO)纳米结构的可见光光催化活性,导致 ZnO 纳米结构的带隙变窄(Eg=3.05eV)而无需掺杂。X 射线衍射、紫外-可见漫反射光谱、X 射线光电子能谱、电子顺磁共振光谱、拉曼光谱、光致发光光谱和高分辨率透射电子显微镜证实了 m-ZnO 的氧空位和带隙变窄。与 p-ZnO 相比,m-ZnO 增强了可见光催化活性,可降解不同类别的染料和 4-硝基苯酚,这证实了由于氧缺陷导致的带隙变窄。这项研究揭示了通过 EAB 对金属氧化物纳米结构进行修饰以控制带结构的方法。