From the School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332.
J Biol Chem. 2013 Oct 4;288(40):29056-68. doi: 10.1074/jbc.M113.487561. Epub 2013 Aug 12.
Photosystem II (PSII) is a membrane-bound enzyme that utilizes solar energy to catalyze the photooxidation of water. Molecular oxygen is evolved after four sequential light-driven oxidation reactions at the Mn4CaO5 oxygen-evolving complex, producing five sequentially oxidized states, Sn. PSII is composed of 17 membrane-spanning subunits and three extrinsic subunits, PsbP, PsbQ, and PsbO. PsbO is intrinsically disordered and plays a role in facilitation of the water oxidizing cycle. Native PsbO can be removed and substituted with recombinant PsbO, thereby restoring steady-state activity. In this report, we used reaction-induced Fourier transform infrared spectroscopy to obtain information concerning the role of PsbP, PsbQ, and PsbO during the S state cycle. Light-minus-dark difference spectra were acquired, monitoring structural changes associated with each accessible flash-induced S state transition in a highly purified plant PSII preparation (Triton X-100, octylthioglucoside). A comparison of S2 minus S1 spectra revealed that removal of PsbP and PsbQ had no significant effect on the data, whereas amide frequency and intensity changes were associated with PsbO removal. These data suggest that PsbO acts as an organizational template for the PSII reaction center. To identify any coupled conformational changes arising directly from PsbO, global (13)C-PsbO isotope editing was employed. The reaction-induced Fourier transform infrared spectra of accessible S states provide evidence that PsbO spectral contributions are temperature (263 and 277 K) and S state dependent. These experiments show that PsbO undergoes catalytically relevant structural dynamics, which are coupled over long distance to hydrogen-bonding changes at the Mn4CaO5 cluster.
光系统 II(PSII)是一种膜结合酶,利用太阳能催化水的光氧化。在 Mn4CaO5 氧释放复合物的四个连续的光驱动氧化反应之后,分子氧被释放出来,产生五个连续的氧化态,Sn。PSII 由 17 个跨膜亚基和 3 个外在亚基 PsbP、PsbQ 和 PsbO 组成。PsbO 是内在无序的,在促进水氧化循环中发挥作用。天然的 PsbO 可以被去除并用重组的 PsbO 取代,从而恢复稳态活性。在本报告中,我们使用反应诱导的傅里叶变换红外光谱来获得有关 PsbP、PsbQ 和 PsbO 在 S 态循环中的作用的信息。在高度纯化的植物 PSII 制剂(Triton X-100、辛基硫代葡萄糖苷)中,通过光暗差光谱获得了结构变化的信息,监测与每个可访问的闪光诱导 S 态跃迁相关的结构变化。S2 减去 S1 光谱的比较表明,去除 PsbP 和 PsbQ 对数据没有显著影响,而酰胺频率和强度的变化与 PsbO 的去除有关。这些数据表明 PsbO 作为 PSII 反应中心的组织模板。为了确定直接来自 PsbO 的任何偶联构象变化,我们采用了全局(13)C-PsbO 同位素编辑。可访问 S 态的反应诱导傅里叶变换红外光谱提供了证据,表明 PsbO 的光谱贡献取决于温度(263 和 277 K)和 S 态。这些实验表明,PsbO 经历了催化相关的结构动力学,这些动力学与 Mn4CaO5 簇的氢键变化耦合,并通过长距离传递。