Authors' Affiliations: Five3 Genomics, LLC; Center for Biomolecular Science and Engineering, University of California; Howard Hughes Medical Institute, Santa Cruz, California; Human Oncology & Pathogenesis Program and Department of Neurosurgery; Cytogenetics Laboratory, Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York; Departments of Neurology & Neurosurgery, Henry Ford Hospital, Detroit, Michigan; and Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
Cancer Res. 2013 Oct 1;73(19):6036-45. doi: 10.1158/0008-5472.CAN-13-0186. Epub 2013 Aug 12.
DNA sequencing offers a powerful tool in oncology based on the precise definition of structural rearrangements and copy number in tumor genomes. Here, we describe the development of methods to compute copy number and detect structural variants to locally reconstruct highly rearranged regions of the tumor genome with high precision from standard, short-read, paired-end sequencing datasets. We find that circular assemblies are the most parsimonious explanation for a set of highly amplified tumor regions in a subset of glioblastoma multiforme samples sequenced by The Cancer Genome Atlas (TCGA) consortium, revealing evidence for double minute chromosomes in these tumors. Further, we find that some samples harbor multiple circular amplicons and, in some cases, further rearrangements occurred after the initial amplicon-generating event. Fluorescence in situ hybridization analysis offered an initial confirmation of the presence of double minute chromosomes. Gene content in these assemblies helps identify likely driver oncogenes for these amplicons. RNA-seq data available for one double minute chromosome offered additional support for our local tumor genome assemblies, and identified the birth of a novel exon made possible through rearranged sequences present in the double minute chromosomes. Our method was also useful for analysis of a larger set of glioblastoma multiforme tumors for which exome sequencing data are available, finding evidence for oncogenic double minute chromosomes in more than 20% of clinical specimens examined, a frequency consistent with previous estimates.
DNA 测序为肿瘤学提供了一种强大的工具,其基于对肿瘤基因组中结构重排和拷贝数的精确定义。在这里,我们描述了从标准短读长配对末端测序数据集中局部重建高度重排的肿瘤基因组区域的方法的开发,这些方法可用于计算拷贝数和检测结构变体,以高精度实现这一目标。我们发现,对于由癌症基因组图谱 (TCGA) 联盟测序的一部分多形性成胶质细胞瘤样本中一组高度扩增的肿瘤区域,圆形组装是最合理的解释,这揭示了这些肿瘤中存在双微体染色体的证据。此外,我们发现一些样本含有多个圆形扩增子,在某些情况下,在初始扩增子生成事件后发生了进一步的重排。荧光原位杂交分析初步证实了双微体染色体的存在。这些组装体中的基因内容有助于识别这些扩增子中可能的驱动致癌基因。一个双微体染色体的 RNA-seq 数据提供了对我们局部肿瘤基因组组装的额外支持,并确定了通过双微体染色体中存在的重排序列而产生的新外显子的出现。我们的方法对于分析具有外显子组测序数据的更大的多形性成胶质细胞瘤肿瘤也很有用,在超过 20%检查的临床标本中发现了致癌性双微体染色体的证据,这一频率与之前的估计一致。