Suppr超能文献

自适应几何细分用于从稀疏体积显微镜图像中重建各向异性发育的多层组织中的 3D 细胞。

Adaptive geometric tessellation for 3D reconstruction of anisotropically developing cells in multilayer tissues from sparse volumetric microscopy images.

机构信息

Electrical Engineering, University of California, Riverside, California, USA.

出版信息

PLoS One. 2013 Aug 5;8(8):e67202. doi: 10.1371/journal.pone.0067202. Print 2013.

Abstract

The need for quantification of cell growth patterns in a multilayer, multi-cellular tissue necessitates the development of a 3D reconstruction technique that can estimate 3D shapes and sizes of individual cells from Confocal Microscopy (CLSM) image slices. However, the current methods of 3D reconstruction using CLSM imaging require large number of image slices per cell. But, in case of Live Cell Imaging of an actively developing tissue, large depth resolution is not feasible in order to avoid damage to cells from prolonged exposure to laser radiation. In the present work, we have proposed an anisotropic Voronoi tessellation based 3D reconstruction framework for a tightly packed multilayer tissue with extreme z-sparsity (2-4 slices/cell) and wide range of cell shapes and sizes. The proposed method, named as the 'Adaptive Quadratic Voronoi Tessellation' (AQVT), is capable of handling both the sparsity problem and the non-uniformity in cell shapes by estimating the tessellation parameters for each cell from the sparse data-points on its boundaries. We have tested the proposed 3D reconstruction method on time-lapse CLSM image stacks of the Arabidopsis Shoot Apical Meristem (SAM) and have shown that the AQVT based reconstruction method can correctly estimate the 3D shapes of a large number of SAM cells.

摘要

需要对多层多细胞组织中的细胞生长模式进行量化,这就需要开发一种 3D 重建技术,能够从共聚焦显微镜 (CLSM) 图像切片中估计单个细胞的 3D 形状和大小。然而,目前使用 CLSM 成像进行 3D 重建的方法需要对每个细胞使用大量的图像切片。但是,在对活跃发育的组织进行活细胞成像的情况下,为了避免细胞长时间暴露在激光辐射下受到损伤,大的深度分辨率是不可行的。在本工作中,我们提出了一种基于各向异性 Voronoi 细分的 3D 重建框架,用于具有极端 z 稀疏性 (2-4 个/细胞) 和广泛细胞形状和大小的紧密堆积多层组织。所提出的方法称为“自适应二次 Voronoi 细分”(AQVT),能够通过从稀疏边界上的数据点估计每个细胞的细分参数来处理稀疏性问题和细胞形状的非均匀性。我们已经在拟南芥茎尖分生组织 (SAM) 的延时 CLSM 图像堆栈上测试了所提出的 3D 重建方法,并表明 AQVT 基于的重建方法能够正确估计大量 SAM 细胞的 3D 形状。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d89a/3734189/2d7b4b8c8ec2/pone.0067202.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验