Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, Laboratoire de Pharmacologie, Facultés de Médecine/Pharmacie, Clermont-Ferrand, France.
PLoS One. 2013 Aug 5;8(8):e70690. doi: 10.1371/journal.pone.0070690. Print 2013.
The discovery that paracetamol is metabolized to the potent TRPV1 activator N-(4-hydroxyphenyl)-5Z,8Z,11Z,14Z-eicosatetraenamide (AM404) and that this metabolite contributes to paracetamol's antinociceptive effect in rodents via activation of TRPV1 in the central nervous system (CNS) has provided a potential strategy for developing novel analgesics. Here we validated this strategy by examining the metabolism and antinociceptive activity of the de-acetylated paracetamol metabolite 4-aminophenol and 4-hydroxy-3-methoxybenzylamine (HMBA), both of which may undergo a fatty acid amide hydrolase (FAAH)-dependent biotransformation to potent TRPV1 activators in the brain. Systemic administration of 4-aminophenol and HMBA led to a dose-dependent formation of AM404 plus N-(4-hydroxyphenyl)-9Z-octadecenamide (HPODA) and arvanil plus olvanil in the mouse brain, respectively. The order of potency of these lipid metabolites as TRPV1 activators was arvanil = olvanil>>AM404> HPODA. Both 4-aminophenol and HMBA displayed antinociceptive activity in various rodent pain tests. The formation of AM404, arvanil and olvanil, but not HPODA, and the antinociceptive effects of 4-aminophenol and HMBA were substantially reduced or disappeared in FAAH null mice. The activity of 4-aminophenol in the mouse formalin, von Frey and tail immersion tests was also lost in TRPV1 null mice. Intracerebroventricular injection of the TRPV1 blocker capsazepine eliminated the antinociceptive effects of 4-aminophenol and HMBA in the mouse formalin test. In the rat, pharmacological inhibition of FAAH, TRPV1, cannabinoid CB1 receptors and spinal 5-HT3 or 5-HT1A receptors, and chemical deletion of bulbospinal serotonergic pathways prevented the antinociceptive action of 4-aminophenol. Thus, the pharmacological profile of 4-aminophenol was identical to that previously reported for paracetamol, supporting our suggestion that this drug metabolite contributes to paracetamol's analgesic activity via activation of bulbospinal pathways. Our findings demonstrate that it is possible to construct novel antinociceptive drugs based on fatty acid conjugation as a metabolic pathway for the generation of TRPV1 modulators in the CNS.
对乙酰氨基酚代谢为强效 TRPV1 激活剂 N-(4-羟基苯基)-5Z,8Z,11Z,14Z-二十碳四烯酰胺(AM404)的发现,以及该代谢物通过激活中枢神经系统(CNS)中的 TRPV1 对啮齿动物的镇痛作用,为开发新型镇痛药提供了一种潜在策略。在这里,我们通过检查去乙酰化对乙酰氨基酚代谢物 4-氨基酚和 4-羟基-3-甲氧基苄胺(HMBA)的代谢和镇痛活性来验证这一策略,这两种物质都可能通过脂肪酸酰胺水解酶(FAAH)依赖性生物转化为大脑中的强效 TRPV1 激活剂。4-氨基酚和 HMBA 的全身给药导致 AM404 和 N-(4-羟基苯基)-9Z-十八碳烯酰胺(HPODA)以及阿伐兰和奥拉兰分别在小鼠大脑中形成剂量依赖性。这些脂质代谢物作为 TRPV1 激活剂的效力顺序为阿伐兰=奥拉兰>>AM404>HPODA。4-氨基酚和 HMBA 均在各种啮齿动物疼痛测试中显示出镇痛活性。AM404、阿伐兰和奥拉兰的形成,但不是 HPODA 的形成,以及 4-氨基酚和 HMBA 的镇痛作用,在 FAAH 缺失小鼠中显著降低或消失。FAAH 缺失小鼠中,4-氨基酚在小鼠福尔马林、von Frey 和尾部浸入试验中的活性也丧失。鞘内注射 TRPV1 阻滞剂辣椒素消除了 4-氨基酚和 HMBA 在小鼠福尔马林试验中的镇痛作用。在大鼠中,FAAH、TRPV1、大麻素 CB1 受体和脊髓 5-HT3 或 5-HT1A 受体的药理学抑制以及球后视神经通路的化学缺失防止了 4-氨基酚的镇痛作用。因此,4-氨基酚的药理学特征与先前报道的对乙酰氨基酚相同,支持我们的建议,即这种药物代谢物通过激活球后视神经通路对乙酰氨基酚的镇痛活性做出贡献。我们的发现表明,基于脂肪酸结合作为 CNS 中 TRPV1 调节剂生成的代谢途径,构建新型镇痛药物是可能的。