Unidad de Biofísica, Consejo Superior de Investigaciones Científicas, Universidad del Pais Vasco/Euskal Herriko Unibertsitatea and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain.
PLoS One. 2013 Aug 5;8(8):e70923. doi: 10.1371/journal.pone.0070923. Print 2013.
Proteolytic enzymes have evolved several mechanisms to cleave peptide bonds. These distinct types have been systematically categorized in the MEROPS database. While a BLAST search on these proteases identifies homologous proteins, sequence alignment methods often fail to identify relationships arising from convergent evolution, exon shuffling, and modular reuse of catalytic units. We have previously established a computational method to detect functions in proteins based on the spatial and electrostatic properties of the catalytic residues (CLASP). CLASP identified a promiscuous serine protease scaffold in alkaline phosphatases (AP) and a scaffold recognizing a β-lactam (imipenem) in a cold-active Vibrio AP. Subsequently, we defined a methodology to quantify promiscuous activities in a wide range of proteins. Here, we assemble a module which encapsulates the multifarious motifs used by protease families listed in the MEROPS database. Since APs and proteases are an integral component of outer membrane vesicles (OMV), we sought to query other OMV proteins, like phospholipase C (PLC), using this search module. Our analysis indicated that phosphoinositide-specific PLC from Bacillus cereus is a serine protease. This was validated by protease assays, mass spectrometry and by inhibition of the native phospholipase activity of PI-PLC by the well-known serine protease inhibitor AEBSF (IC50 = 0.018 mM). Edman degradation analysis linked the specificity of the protease activity to a proline in the amino terminal, suggesting that the PI-PLC is a prolyl peptidase. Thus, we propose a computational method of extending protein families based on the spatial and electrostatic congruence of active site residues.
蛋白水解酶已经进化出几种切割肽键的机制。这些不同类型的酶在 MEROPS 数据库中被系统地分类。虽然对这些蛋白酶进行 BLAST 搜索可以识别同源蛋白,但序列比对方法通常无法识别由趋同进化、外显子改组和催化单元的模块化再利用引起的关系。我们之前建立了一种基于催化残基的空间和静电特性来检测蛋白质功能的计算方法 (CLASP)。CLASP 在碱性磷酸酶 (AP) 中鉴定了一种混杂的丝氨酸蛋白酶支架,在一种冷活性的 Vibrio AP 中鉴定了一种识别β-内酰胺 (亚胺培南) 的支架。随后,我们定义了一种方法来量化广泛的蛋白质中的混杂活性。在这里,我们组装了一个模块,其中包含了 MEROPS 数据库中列出的蛋白酶家族使用的各种基序。由于 AP 和蛋白酶是外膜囊泡 (OMV) 的一个组成部分,我们试图使用这个搜索模块查询其他 OMV 蛋白,如磷脂酶 C (PLC)。我们的分析表明,来自蜡状芽孢杆菌的磷酸肌醇特异性 PLC 是一种丝氨酸蛋白酶。这通过蛋白酶测定、质谱分析以及通过众所周知的丝氨酸蛋白酶抑制剂 AEBSF 抑制 PI-PLC 的天然磷脂酶活性得到了验证 (IC50 = 0.018 mM)。Edman 降解分析将蛋白酶活性的特异性与氨基末端的脯氨酸联系起来,表明 PI-PLC 是一种脯氨酰肽酶。因此,我们提出了一种基于活性位点残基的空间和静电一致性来扩展蛋白质家族的计算方法。